+0  
 
+1
50
2
avatar+5 

(2,16)(5,30)

 Feb 12, 2019

Best Answer 

 #1
avatar+244 
+2

1. Note the equation \(\frac{Y_2-Y_1}{X_2-X_1}\)

 

2. Substitute \(\frac{(30)-(16)}{(5)-(2)}\)

 

3. Solve \(\frac{14}{3}\)

 

4.  Note the equation \(y=mx+b\)

 

We already have \(m\), which is \(\frac{14}{3}\)

 

So \(y=\frac{14}{3}x+b\)

 

5. Substitute a coordinate \((x,y)\), from the problem

 

Take \((2,16)\) and substitute it in to get: \(16=\frac{14}{3}*(2)+b\)

 

Solving we get \(b=\frac{20}{3}\)

 

6. Put \(b\) and \(m\) together to make the equation \(\boxed{y=\frac{14}{3}x+\frac{20}{3}}\)

.
 Feb 12, 2019
 #1
avatar+244 
+2
Best Answer

1. Note the equation \(\frac{Y_2-Y_1}{X_2-X_1}\)

 

2. Substitute \(\frac{(30)-(16)}{(5)-(2)}\)

 

3. Solve \(\frac{14}{3}\)

 

4.  Note the equation \(y=mx+b\)

 

We already have \(m\), which is \(\frac{14}{3}\)

 

So \(y=\frac{14}{3}x+b\)

 

5. Substitute a coordinate \((x,y)\), from the problem

 

Take \((2,16)\) and substitute it in to get: \(16=\frac{14}{3}*(2)+b\)

 

Solving we get \(b=\frac{20}{3}\)

 

6. Put \(b\) and \(m\) together to make the equation \(\boxed{y=\frac{14}{3}x+\frac{20}{3}}\)

CalculatorUser Feb 12, 2019
 #2
avatar+98090 
0

Nice, CU...a "Best Answer ".....!!!!

 

 

cool cool cool

CPhill  Feb 12, 2019

36 Online Users

avatar
avatar
avatar
avatar