+0  
 

Best Answer 

 #1
avatar+19995 
+2

What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?

 

center at \((x_c=-2,\ y_c= 1 )\)

passing through point at \((x_p=-4,\ y_p= 1 )\)

\(\text{radius}^2 = r^2 = (x_c-x_p)^2+(y_c-y_p)^2\)

 

general form of the equation of a circle: \((x-x_c)^2 +(y-y_c)^2 = r^2\)

 

so we have:

\(\small{ \begin{array}{|rcll|} \hline (x-x_c)^2 +(y-y_c)^2 &=& r^2 \qquad | \quad r^2 = (x_c-x_p)^2+(y_c-y_p)^2 \\ (x-x_c)^2 +(y-y_c)^2 &=& (x_c-x_p)^2+(y_c-y_p)^2 \\ x^2-2x_c\cdot x + \not{x_c^2} + y^2-2y_c\cdot y + \not{y_c^2} &=& \not{x_c^2} -2x_cx_p + x_p^2 + \not{y_c^2}-2y_cy_p + y_p^2\\ x^2-2x_c\cdot x + y^2-2y_c\cdot y &=& -2x_cx_p + x_p^2 + -2y_cy_p + y_p^2 \\ x^2-2x_c\cdot x + y^2-2y_c\cdot y + 2x_cx_p - x_p^2 + 2y_cy_p - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + 2x_cx_p + 2y_cy_p - x_p^2 - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ \hline \end{array} } \)

 

The general form of the equation of a circle with its center \((x_c,y_c) \)and passing through point \( (x_p,y_p) \) is:

\(\mathbf{x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) = 0} \)

 

\(\small{ \begin{array}{|lrcll|} \hline x_c=-2,\ y_c= 1 \\ x_p=-4,\ y_p= 1 \\\\ & x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ & x^2+ y^2 -2\cdot (-2)\cdot x -2\cdot 1\cdot y + (-4)\cdot[2\cdot(-2)-(-4)] + 1\cdot(2\cdot 1-1) &=& 0 \\ & x^2+ y^2 +4x -2y + (-4)\cdot(-4+4) + 1\cdot(2-1) &=& 0 \\ & x^2+ y^2 +4x -2y + 0 + 1\cdot 1 &=& 0 \\ & x^2+ y^2 +4x -2y + 1 &=& 0 \\ \hline \end{array} }\)

 

The equation of the circle is \(x^2+ y^2 +4x -2y + 1 = 0 \)

 

laugh

heureka  Jun 7, 2017
edited by heureka  Jun 7, 2017
 #1
avatar+19995 
+2
Best Answer

What is the general form of the equation of a circle with its center at (-2, 1) and passing through (-4, 1)?

 

center at \((x_c=-2,\ y_c= 1 )\)

passing through point at \((x_p=-4,\ y_p= 1 )\)

\(\text{radius}^2 = r^2 = (x_c-x_p)^2+(y_c-y_p)^2\)

 

general form of the equation of a circle: \((x-x_c)^2 +(y-y_c)^2 = r^2\)

 

so we have:

\(\small{ \begin{array}{|rcll|} \hline (x-x_c)^2 +(y-y_c)^2 &=& r^2 \qquad | \quad r^2 = (x_c-x_p)^2+(y_c-y_p)^2 \\ (x-x_c)^2 +(y-y_c)^2 &=& (x_c-x_p)^2+(y_c-y_p)^2 \\ x^2-2x_c\cdot x + \not{x_c^2} + y^2-2y_c\cdot y + \not{y_c^2} &=& \not{x_c^2} -2x_cx_p + x_p^2 + \not{y_c^2}-2y_cy_p + y_p^2\\ x^2-2x_c\cdot x + y^2-2y_c\cdot y &=& -2x_cx_p + x_p^2 + -2y_cy_p + y_p^2 \\ x^2-2x_c\cdot x + y^2-2y_c\cdot y + 2x_cx_p - x_p^2 + 2y_cy_p - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + 2x_cx_p + 2y_cy_p - x_p^2 - y_p^2 &=& 0 \\ x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ \hline \end{array} } \)

 

The general form of the equation of a circle with its center \((x_c,y_c) \)and passing through point \( (x_p,y_p) \) is:

\(\mathbf{x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) = 0} \)

 

\(\small{ \begin{array}{|lrcll|} \hline x_c=-2,\ y_c= 1 \\ x_p=-4,\ y_p= 1 \\\\ & x^2+ y^2 -2x_c\cdot x -2y_c\cdot y + x_p\cdot(2x_c-x_p) + y_p\cdot(2y_c-y_p) &=& 0 \\ & x^2+ y^2 -2\cdot (-2)\cdot x -2\cdot 1\cdot y + (-4)\cdot[2\cdot(-2)-(-4)] + 1\cdot(2\cdot 1-1) &=& 0 \\ & x^2+ y^2 +4x -2y + (-4)\cdot(-4+4) + 1\cdot(2-1) &=& 0 \\ & x^2+ y^2 +4x -2y + 0 + 1\cdot 1 &=& 0 \\ & x^2+ y^2 +4x -2y + 1 &=& 0 \\ \hline \end{array} }\)

 

The equation of the circle is \(x^2+ y^2 +4x -2y + 1 = 0 \)

 

laugh

heureka  Jun 7, 2017
edited by heureka  Jun 7, 2017

41 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.