what is the greatest common factor of 7983 and 100000
I. Euclid
$$\small{\text{
$
\begin{array}{rcrrr}
& && q& r\\
100000 & : & 7983 & 12 & 4204\\
7983 & : & 4204& 1 & 3779\\
4204& : & 3779& 1 & 425\\
3779& : & 425& 8 & 379\\
425& : & 379& 1 & 46\\
379& : & 46& 8 & 11\\
46& : & 11& 4 & 2\\
11& : & 2& 5 & \textcolor[rgb]{1,0,0}{1}\\
2& : & 1& 2 & 0
\end{array}
$
}}$$
The greatest common factor of 7983 and 100000 = 1 . They are relatively prime.
II. Prime factorization
$$\small{ \text{
$
\begin{array}{rrcrl}
100000 \quad & 2^5 &*& 5^5 & \qquad *(3^0*887^0)\\
7983 \quad & 3^2 &*& 887^1 & \qquad *(2^0*5^0)\\
\end{array}
$
}}$$
take the smallest exponents: $$2^0*3^0*5^0*887^0 = \textcolor[rgb]{1,0,0}{1}$$
There is a neat website that factors numbers for you:
http://www.coolmathgames9.com/factors/
It says that the factors of 7983 are: 1, 3, 9, 887, 2661, and 7983.
Of these factors, the only one that is a factor of 100,000 is 1.
So, the greatest common factor of 7983 and 100,000 is 1.
what is the greatest common factor of 7983 and 100000
I. Euclid
$$\small{\text{
$
\begin{array}{rcrrr}
& && q& r\\
100000 & : & 7983 & 12 & 4204\\
7983 & : & 4204& 1 & 3779\\
4204& : & 3779& 1 & 425\\
3779& : & 425& 8 & 379\\
425& : & 379& 1 & 46\\
379& : & 46& 8 & 11\\
46& : & 11& 4 & 2\\
11& : & 2& 5 & \textcolor[rgb]{1,0,0}{1}\\
2& : & 1& 2 & 0
\end{array}
$
}}$$
The greatest common factor of 7983 and 100000 = 1 . They are relatively prime.
II. Prime factorization
$$\small{ \text{
$
\begin{array}{rrcrl}
100000 \quad & 2^5 &*& 5^5 & \qquad *(3^0*887^0)\\
7983 \quad & 3^2 &*& 887^1 & \qquad *(2^0*5^0)\\
\end{array}
$
}}$$
take the smallest exponents: $$2^0*3^0*5^0*887^0 = \textcolor[rgb]{1,0,0}{1}$$