+0  
 
0
3921
2
avatar

What is the probability that a phone number generated using the digits
1, 2, 2, 4, 5, 5, 6, and 2 is the number 654-5222?

 May 6, 2016

Best Answer 

 #2
avatar+118723 
+9

What is the probability that a phone number generated using the digits
1, 2, 2, 4, 5, 5, 6, and 2 is the number 654-5222?

 

mmm

\(\frac{1}{8}\times \frac{2}{7}\times \frac{1}{6}\times \frac{1}{5}\times \frac{3}{4}\times \frac{2}{3}\times \frac{1}{2}\\ =\frac{1*2*1*1*3*2*1}{8!}\\ =\frac{12}{40320}\\ =\frac{1}{336}\\\)

 

OR

The number of permutations for choosing 7 digits from these digits is

\(\frac{8P7}{3P3*2P2}=\frac{8!}{3!2!}=\frac{40320}{6*2}=336\)

 

We want the probability of choosing just one of these permutations so the answer is    \(\frac{1}{336}\)

 May 7, 2016
 #1
avatar+37170 
+5

I come up with 1 out of 40,320   chance.

nPr =

8P7  = 40320

 

 

 

1st digit  8 choices

2nd        7

3rd         6

4th          5

5th          4

6th          3

7th          2        8x7x6x5x4x3x2 = 40320 possible combinations of which ONE will be 654 5222

 May 6, 2016
 #2
avatar+118723 
+9
Best Answer

What is the probability that a phone number generated using the digits
1, 2, 2, 4, 5, 5, 6, and 2 is the number 654-5222?

 

mmm

\(\frac{1}{8}\times \frac{2}{7}\times \frac{1}{6}\times \frac{1}{5}\times \frac{3}{4}\times \frac{2}{3}\times \frac{1}{2}\\ =\frac{1*2*1*1*3*2*1}{8!}\\ =\frac{12}{40320}\\ =\frac{1}{336}\\\)

 

OR

The number of permutations for choosing 7 digits from these digits is

\(\frac{8P7}{3P3*2P2}=\frac{8!}{3!2!}=\frac{40320}{6*2}=336\)

 

We want the probability of choosing just one of these permutations so the answer is    \(\frac{1}{336}\)

Melody May 7, 2016

0 Online Users