+0  
 
0
363
2
avatar

What is the remainder of 5^2010 when it is divided by 7?

Guest Aug 9, 2017
 #1
avatar
0

5^2010 when it is divided by 7?

 

5^2010 mod 7 =1 The remainder.

Guest Aug 9, 2017
 #2
avatar+20009 
0

What is the remainder of 5^2010 when it is divided by 7?

 

\(\begin{array}{rcll} 5^{2010} \pmod {7} &=& \ ? \end{array}\)

 

\(\small{ \begin{array}{|lrcll|} \hline 1. & gcd(7,5) &=& 1 \qquad | \qquad 7 \text{ and } 5 \text{ are relatively prim } \\ 2. & 7 \text{ is a prim number } \\ 3. & \phi() \text{ is Euler's totient function, Euler's phi function }\\ & \phi(p) &=& p-1 \qquad p \text{ is a prim number} \\ & \phi(7) &=& 7-1 \\ & \phi(7) &=& {\color{red}6} \\ 4. & 5^{\phi(7)} &\equiv& 1 \pmod{7} \\ & 5^{{\color{red}6}} &\equiv& 1 \pmod{7} \\ \hline &\text{ Let } \phi(n) \text{ denote the totient function. } \\ &\text{Then } a^{\phi(n)} \equiv 1 \pmod {n} \text{ for all } a \text{ relatively prime to } n. \\ \hline \end{array} }\)

 

\(\begin{array}{lrcll} 5. & 2010 &=& {\color{red}6}\cdot 335 \\ & 5^{2010 } \pmod{7} &=& 5^{ {\color{red}6}\cdot 335 } \pmod{7} \\ & &=& ( 5^{ {\color{red}6} } )^{335} \pmod{7} \quad & | \quad 5^{{\color{red}6}} \equiv {\color{blue}1} \pmod{7} \\ & &\equiv& ( {\color{blue}1} )^{335} \pmod{7} \\ & &\equiv& 1 \pmod{7} \\ \end{array}\)

 

The remainder of \(\frac{5^{2010}} {7}\) is \(\mathbf{1}\)

 

laugh

heureka  Aug 9, 2017

20 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.