We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
202
1
avatar

What is the remainder when 333^{333} is divided by 11?

 Aug 14, 2018
 #1
avatar+22172 
+2

What is the remainder when 333^{333} is divided by 11?

 

\(\begin{array}{|rcll|} \hline && 333^{333} \pmod{11} \quad & | \quad 333 \equiv 3 \pmod{11} \\ &\equiv & 3^{333} \pmod{11} \quad & | \quad \text{Fermat's little theorem } 3^{10} \equiv 1 \pmod{11} \\ &\equiv & 3^{10\cdot 33+3} \pmod{11} \\ &\equiv & \left(3^{10}\right)^{33} 3^3 \pmod{11} \\ &\equiv & (1)^{33} 3^3 \pmod{11} \\ &\equiv & 1\cdot 3^3 \pmod{11} \\ &\equiv & 3^3 \pmod{11} \\ &\equiv & 27 \pmod{11} \\ &\mathbf{\equiv} & \mathbf{5 \pmod{11}} \\ \hline \end{array}\)

 

laugh

 Aug 14, 2018

32 Online Users

avatar
avatar