+0  
 
0
125
1
avatar

What is the remainder when 333^{333} is divided by 11?

 Aug 14, 2018
 #1
avatar+20839 
+2

What is the remainder when 333^{333} is divided by 11?

 

\(\begin{array}{|rcll|} \hline && 333^{333} \pmod{11} \quad & | \quad 333 \equiv 3 \pmod{11} \\ &\equiv & 3^{333} \pmod{11} \quad & | \quad \text{Fermat's little theorem } 3^{10} \equiv 1 \pmod{11} \\ &\equiv & 3^{10\cdot 33+3} \pmod{11} \\ &\equiv & \left(3^{10}\right)^{33} 3^3 \pmod{11} \\ &\equiv & (1)^{33} 3^3 \pmod{11} \\ &\equiv & 1\cdot 3^3 \pmod{11} \\ &\equiv & 3^3 \pmod{11} \\ &\equiv & 27 \pmod{11} \\ &\mathbf{\equiv} & \mathbf{5 \pmod{11}} \\ \hline \end{array}\)

 

laugh

 Aug 14, 2018

9 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.