\(\quad\sqrt{48x^4y^3} \\ =\\ \quad\sqrt{2\cdot2\cdot2\cdot2\cdot3\cdot x^4\cdot y^3} \\ =\\ \quad\sqrt{2^4\cdot3\cdot x^4\cdot y^3} \\ =\\ \quad\sqrt{2^4\cdot3\cdot x^4\cdot y^2\cdot y} \\ =\\ \quad\sqrt{2^4\cdot x^4\cdot y^2\cdot 3\cdot y} \\ =\)
\(\quad\sqrt{2^4}\cdot \sqrt{x^4}\cdot \sqrt{y^2}\cdot \sqrt{3\cdot y}\\ =\\ \quad2^2\cdot x^2\cdot y\cdot\sqrt{3\cdot y}\\ =\\ \quad4x^2y\sqrt{3 y} \) Since x and y are positive, we can say...