+0  
 
0
907
2
avatar+647 

What is the smallest distance between the origin and a point on the graph of y = 1/sqrt2 (x^2 - 3)?

 Nov 14, 2017
 #1
avatar
0

The smallest distance is 4.

 Nov 9, 2019
 #2
avatar+129852 
+1

Let the  point be   [ x,  (1/√2) ( x^2 - 3) ]

 

D  = √[ x^2 +   (1/2) (x^4  - 6x^2  + 9) ]

 

D '  =   (1/2) [x^2 + (1/2) (x^2 - 6x^2  + 9)]^(-1/2)  [2x + (1/2)(4x^3 - 12x ) ]

 

Set this to 0  and solve for x  and we get that

 

2x  + (1/2) (4x^3 - 12x)  =  0

 

2x   + 2x^3 - 6x  =  0

 

2x^3 - 4x  =  0

 

2x  ( x*2 - 2)  = 0

 

x = √2  

 

So

 

D  =  √ [2  + (1/2) (4 - 12  + 9 ) ]   =  √[2 + 1/2 ]  =  √ [2.5]  units  ≈  1.58  units

 

 

cool cool cool

 Nov 9, 2019

1 Online Users