We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
179
2
avatar+75 

The function f(x) has the property that f (x+y) = f(x)+f(y)+2xy, for all positive integers x and y. If f(1) = 4, then what is the value of f(8)?

 Oct 16, 2018
 #1
avatar+5 
+1

So, this is a really fun pattern problem. Now, since you already know f(1), it will be advantageous to write f(1+y) as f(n), and say that for f(8), y=7. Then start checking to see if there's a pattern which you can gneralize in terms of n, while n=y+1. Remember that f(x) is a known variable, and that y equals n-1. A hint: remember the factorials.

 Oct 16, 2018
 #2
avatar+322 
+1

I guess f(2)= f(1) + f(1) + 2(1)(1) = 4 + 4 + 2 =10 ,f(4) = f(2) + f(2) + 2(2)(2) = 10 +10 + 8 = 28 

f(8) = f(4) + f(4) +2(4)(4) = 28 + 28 + 32 = 88 

So i think f(8) = 88 

Hope it helps!

 Oct 16, 2018

16 Online Users

avatar