+0  
 
+3
330
1
avatar+97 

what is the volume of rotation.

y=5(sin(4x))

between 0.00 ans 0.60.

Oli96  Oct 1, 2014

Best Answer 

 #1
avatar+93342 
+8

between x=0 and x=6?

$$\\V=\pi \int_0^6\;(5(sin(4x))^2dx\\\\
V=25\pi \int_0^6\;sin^2(4x)dx\\\\
--------------------\\\\
cos(8x)=cos^2(4x)-sin^2(4x)\\\\
cos(8x)=1-sin^2(4x)-sin^2(4x)\\\\
cos(8x)=1-2sin^2(4x)\\\\
(cos(8x)-1)/-2=sin^2(4x)\\\\
sin^2(4x)=\frac{1-cos(8x)}{2}\\\\
--------------------\\\\$$

$$\\SO\\
V=25\pi \int_0^6\;sin^2(4x)dx\\\\
V=25\pi \int_0^6\;\frac{1-cos(8x)}{2}dx\\\\
V=12.5\pi \int_0^6\;1-cos(8x)dx\\\\
V=12.5\pi\left [\;x-\frac{sin(8x)}{8}\right]_0^6\\\\
V=12.5\pi\left [\left(\;6-\frac{sin(48)}{8}\right)-\left(\;0-\frac{sin(0)}{8}\right)\right]\\\\
V=12.5\pi \left(\;6-\frac{sin(48)}{8}\right)\\\\$$

sin(48)=-0.768254661     (remember that it is 48 radians)

 

$${\mathtt{12.5}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}\left({\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{0.768\: \!254\: \!661}}}{{\mathtt{8}}}}\right) = {\mathtt{239.390\: \!610\: \!267\: \!802\: \!800\: \!8}}$$

 

$$So I get $ 239\;units^3\qquad $(To the nearest whole number)$$$

Melody  Oct 1, 2014
 #1
avatar+93342 
+8
Best Answer

between x=0 and x=6?

$$\\V=\pi \int_0^6\;(5(sin(4x))^2dx\\\\
V=25\pi \int_0^6\;sin^2(4x)dx\\\\
--------------------\\\\
cos(8x)=cos^2(4x)-sin^2(4x)\\\\
cos(8x)=1-sin^2(4x)-sin^2(4x)\\\\
cos(8x)=1-2sin^2(4x)\\\\
(cos(8x)-1)/-2=sin^2(4x)\\\\
sin^2(4x)=\frac{1-cos(8x)}{2}\\\\
--------------------\\\\$$

$$\\SO\\
V=25\pi \int_0^6\;sin^2(4x)dx\\\\
V=25\pi \int_0^6\;\frac{1-cos(8x)}{2}dx\\\\
V=12.5\pi \int_0^6\;1-cos(8x)dx\\\\
V=12.5\pi\left [\;x-\frac{sin(8x)}{8}\right]_0^6\\\\
V=12.5\pi\left [\left(\;6-\frac{sin(48)}{8}\right)-\left(\;0-\frac{sin(0)}{8}\right)\right]\\\\
V=12.5\pi \left(\;6-\frac{sin(48)}{8}\right)\\\\$$

sin(48)=-0.768254661     (remember that it is 48 radians)

 

$${\mathtt{12.5}}{\mathtt{\,\times\,}}{\mathtt{\pi}}{\mathtt{\,\times\,}}\left({\mathtt{6}}{\mathtt{\,\small\textbf+\,}}{\frac{{\mathtt{0.768\: \!254\: \!661}}}{{\mathtt{8}}}}\right) = {\mathtt{239.390\: \!610\: \!267\: \!802\: \!800\: \!8}}$$

 

$$So I get $ 239\;units^3\qquad $(To the nearest whole number)$$$

Melody  Oct 1, 2014

21 Online Users

avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.