We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
-5
139
3
avatar+8 

What is the way you solve this?

 Feb 22, 2019
 #1
avatar+103120 
+3

These can be lengthy !!!

 

x + y + z = 8     (1)

x - y - z = 8        (2)

2x + y + 2z = 16    (3)

 

Add (1) and (2)    and we get that    2x = 16 ⇒  x = 8

 

Put this into (2) and (3)  for x

 

8 - y - z = 8   ⇒      -y - z = 0      (4) 

2(8) + y + 2z =  16   ⇒   16 + y + 2z = 16 ⇒   y + 2z = 0     (5)

 

Add (4) and (5)  and we get that

 

z = 0

 

Using (1)

 

8 + y + 0 = 8

 

y = 0

 

So

 

{ x, y , z }   = { 8, 0 , 0}

 

 

cool cool cool

 Feb 22, 2019
 #2
avatar+103120 
+2

Second one

x + y -  z = -1             (1) 

4x + 4y - 4z = -2     ⇒    x + y - z = -1/2    (2) 

3x + 2y + z = 0         (3)

 

Note GM....there are no solutions possible

The reason why???....look at (1) and (2)

 

x + y - z     cannot  equal  -1    and -1/2   at the same time  !!!!

 

Whatever x + y - z    is    ....it must lead to the same result every time  !!!

 

 

cool cool cool

 Feb 22, 2019
 #3
avatar+103120 
+2

Last one

 

x + y + z  = 4           (1) 

5x + 5y + z = 12      (2)

x - 4y + z = 9    ⇒   -x  + 4y - z  = -9     (3)

 

Add (1) and (3)    and we have

5y  = - 5   

y = -1

 

Put this into  (1)

x - 1 + z = 4

x + z = 5

z = 5 - x

 

Using (2)  and making the substitutions we have

 

5x + 5(-1) + 5 - x = 12

4x  = 12

x = 3

 

And

z = 5 - 3 = 2

 

So {x, y, z}   = { 3, -1, 2 }

 

 

cool cool cool

 Feb 22, 2019
edited by CPhill  Feb 22, 2019

4 Online Users