These can be lengthy !!!
x + y + z = 8 (1)
x - y - z = 8 (2)
2x + y + 2z = 16 (3)
Add (1) and (2) and we get that 2x = 16 ⇒ x = 8
Put this into (2) and (3) for x
8 - y - z = 8 ⇒ -y - z = 0 (4)
2(8) + y + 2z = 16 ⇒ 16 + y + 2z = 16 ⇒ y + 2z = 0 (5)
Add (4) and (5) and we get that
z = 0
Using (1)
8 + y + 0 = 8
y = 0
So
{ x, y , z } = { 8, 0 , 0}
Second one
x + y - z = -1 (1)
4x + 4y - 4z = -2 ⇒ x + y - z = -1/2 (2)
3x + 2y + z = 0 (3)
Note GM....there are no solutions possible
The reason why???....look at (1) and (2)
x + y - z cannot equal -1 and -1/2 at the same time !!!!
Whatever x + y - z is ....it must lead to the same result every time !!!
Last one
x + y + z = 4 (1)
5x + 5y + z = 12 (2)
x - 4y + z = 9 ⇒ -x + 4y - z = -9 (3)
Add (1) and (3) and we have
5y = - 5
y = -1
Put this into (1)
x - 1 + z = 4
x + z = 5
z = 5 - x
Using (2) and making the substitutions we have
5x + 5(-1) + 5 - x = 12
4x = 12
x = 3
And
z = 5 - 3 = 2
So {x, y, z} = { 3, -1, 2 }