x+x-1+x*2-5=169 simplify
2x - 1 + x^2 - 5 = 169
x^2 + 2x - 6 = 169 subtract 169 from both sides
x^2 + 2x - 175 = 0 this will not factor......using the on-site solver, we have
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{175}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{1}}\\
{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{14.266\: \!499\: \!161\: \!421\: \!599\: \!4}}\\
{\mathtt{x}} = {\mathtt{12.266\: \!499\: \!161\: \!421\: \!599\: \!4}}\\
\end{array} \right\}$$
And those are the two solutions.....
x+x-1+x*2-5=169 simplify
2x - 1 + x^2 - 5 = 169
x^2 + 2x - 6 = 169 subtract 169 from both sides
x^2 + 2x - 175 = 0 this will not factor......using the on-site solver, we have
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{175}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{1}}\\
{\mathtt{x}} = {\mathtt{4}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{11}}}}{\mathtt{\,-\,}}{\mathtt{1}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{14.266\: \!499\: \!161\: \!421\: \!599\: \!4}}\\
{\mathtt{x}} = {\mathtt{12.266\: \!499\: \!161\: \!421\: \!599\: \!4}}\\
\end{array} \right\}$$
And those are the two solutions.....