+0  
 
0
408
3
avatar+598 

What real number is equal to the expression \($2 + \frac{4}{1 + \frac{4}{2 + \frac{4}{1 + \cdots}}}$\), where the $1$s and the $2$s alternate?

michaelcai  Oct 12, 2017
 #1
avatar+89953 
+1

Let   y  =    2  +          4

                            _______

                           1    +      4

                                       _____

                                        ........

 

So   we have

 

y   =    2       +       4

                          _____

                          1  +   4

                                  __

                                    y

 

 

y  =  2   +       4

                   _____

                 [  y  + 4 ]  / y

 

 

 

y =  2    +  4y /  [ y + 4]        multiply through by  y + 4

 

y [ y + 4]  = 2 [ y + 4]   +  4y     simplify

 

y^2  + 4y  =  2y + 8  +  4y

 

y^2  - 2y  - 8    = 0       factor

 

(y - 4)  ( y + 2)  = 0

 

Set each factor to 0  and solve for y  and we have that

 

y = 4    or  y  = -2

 

The continued fraction is positive....so ...y  = 4  =  the real number

 

P.S.  - as I'm never too sure about these, could someone check my answer  ???

 

 

cool cool cool

CPhill  Oct 12, 2017
edited by CPhill  Oct 12, 2017
 #3
avatar+598 
+1

This is correct. Thanks!

michaelcai  Oct 12, 2017
 #2
avatar
0


 

Guest Oct 12, 2017
edited by Guest  Oct 12, 2017

5 Online Users

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.