Loading [MathJax]/jax/output/SVG/config.js
 
+0  
 
0
1383
1
avatar

What's the formula and the answer?
How would you solve this:

      Ralph invests $15,600 into two different acconunts; a savings account and checking account. Thr savings account earns 8% interest. The checking account earns 9% interest. After 1 year he earned $1334.28 interest. How much did Raph invest into each account?

 Apr 29, 2015

Best Answer 

 #1
avatar+23254 
+5

Let s represent the amount in the savings account  --->  the amount earned in the savings account is 0.08s.

Let c be the amount in the checking account  --->  the amount earned in the checking account is 0.09c

Total, they earned $1334.28  --->  0.08s + 0.09c  =  1334.28

Before the two accounts earned any interest, they totaled $15,600.00  --->  s + c  =  15,600.

We need to solve these two equations simultaneously:

0.08s + 0.09c  =  1334.28

      s + c         =  15,600

One way to do this is by substitution:

  first, solve the second equation for c  --->   c  =  15,600 - s

  then, substitute this value back into the first equation:

         0.08s + 0.09c  =  1334.28

--->   0.08s + 0.09(15600 - s)  =  1334.27

--->   0.08s + 1404 - 0.09s  =  1334.27

--->               1404 - 0.01s  =  1334.27

--->                       -0.01s  =  -69.73

--->                              s  =  $6973.00

Since c = 15600 - s, c = 15600 - 6973  =  $8627.00

 Apr 29, 2015
 #1
avatar+23254 
+5
Best Answer

Let s represent the amount in the savings account  --->  the amount earned in the savings account is 0.08s.

Let c be the amount in the checking account  --->  the amount earned in the checking account is 0.09c

Total, they earned $1334.28  --->  0.08s + 0.09c  =  1334.28

Before the two accounts earned any interest, they totaled $15,600.00  --->  s + c  =  15,600.

We need to solve these two equations simultaneously:

0.08s + 0.09c  =  1334.28

      s + c         =  15,600

One way to do this is by substitution:

  first, solve the second equation for c  --->   c  =  15,600 - s

  then, substitute this value back into the first equation:

         0.08s + 0.09c  =  1334.28

--->   0.08s + 0.09(15600 - s)  =  1334.27

--->   0.08s + 1404 - 0.09s  =  1334.27

--->               1404 - 0.01s  =  1334.27

--->                       -0.01s  =  -69.73

--->                              s  =  $6973.00

Since c = 15600 - s, c = 15600 - 6973  =  $8627.00

geno3141 Apr 29, 2015

1 Online Users

avatar