+0  
 
0
569
1
avatar

What's x1/2*x4*x-3*3/4? (All the numbers are square roots).

 Nov 12, 2014

Best Answer 

 #1
avatar+33661 
+5

Do you mean: 

$$x^{\frac{1}{2}}x^4x=3*\frac{3}{4}$$

 

If so: 

$$x^{\frac{11}{2}}=\frac{9}{4}$$

$$x=(\frac{9}{4})^{\frac{2}{11}}$$

$${\mathtt{x}} = {\left({\frac{{\mathtt{9}}}{{\mathtt{4}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{11}}}}\right)} \Rightarrow {\mathtt{x}} = {\mathtt{1.158\: \!865\: \!903\: \!503\: \!021\: \!3}}$$

.

Or did you mean:

$$x^\frac{1}{2}x^4x^{-3\times \frac{3}{4}}$$

which simplifies to:

$$x^{\frac{1}{2}+4-\frac{9}{4}}=x^{\frac{9}{4}}$$

 

Or did you mean something else entirely?

.

 Nov 12, 2014
 #1
avatar+33661 
+5
Best Answer

Do you mean: 

$$x^{\frac{1}{2}}x^4x=3*\frac{3}{4}$$

 

If so: 

$$x^{\frac{11}{2}}=\frac{9}{4}$$

$$x=(\frac{9}{4})^{\frac{2}{11}}$$

$${\mathtt{x}} = {\left({\frac{{\mathtt{9}}}{{\mathtt{4}}}}\right)}^{\left({\frac{{\mathtt{2}}}{{\mathtt{11}}}}\right)} \Rightarrow {\mathtt{x}} = {\mathtt{1.158\: \!865\: \!903\: \!503\: \!021\: \!3}}$$

.

Or did you mean:

$$x^\frac{1}{2}x^4x^{-3\times \frac{3}{4}}$$

which simplifies to:

$$x^{\frac{1}{2}+4-\frac{9}{4}}=x^{\frac{9}{4}}$$

 

Or did you mean something else entirely?

.

Alan Nov 12, 2014

2 Online Users