+0

# what the descride transformation (3,1),(0,-5),(-4,-2)

0
369
2

what the descride transformation (3,1),(0,-5),(-4,-2)

off-topic
Guest Apr 23, 2017
#1
+7651
0

what the descride transformation (3,1),(0,-5),(-4,-2)

A graph through the three points may be a circle or a second-degree parabola, 3rd degree or higher degree.

Circle:

$$x_M=\frac{x_1+x_2+x_3}{3}=\frac{3+0-4}{3}\\x_M=\frac{7}{3}$$

$$y_M=\frac{y_1+y_2+y_3}{3}=\frac{1-5-2}{3}\\y_M=-2$$

$$r=\sqrt{(x_M-x_1)^2+(y_M-y_1)^2}$$

$$r=\sqrt{(\frac{7}{3}-3)^2+(-2-1)^2}$$

$$r=\sqrt{(-\frac{2}{3})^2+(-3)^2}=\sqrt{\frac{4}{9}+9}=\sqrt{\frac{85}{9}}$$

$$r=\frac{\sqrt{85}}{3}$$

Circular function

$$x^2+y^2=r^2$$

$$x^2+y^2=\frac{85}{9}$$

!

asinus  Apr 23, 2017
#2
+7651
0

transformation (3,1),(0,-5),(-4,-2)

Parable of three points

$$y=ax^2+bx+c$$

A ) $$1=a\cdot 3^2+3b+c\\9a+3b+c=1$$

B)  $$-5=0a+0b+c\\c=-5$$

C)  $$-2=16a-4b+c\\16a-4b-5=-2$$

A)  $$9a+3b-5=1\\a=\frac{6-3b}{9}$$

C)  $$16a-4b=3\\a=\frac{4b+3}{16}$$

A)&C)  $$\frac{6-3b}{9}=\frac{4b+3}{16}\\96-48b=36b+27\\84b=69\\b=\frac{69}{84}=\frac{3\cdot23}{2\cdot2\cdot21}\\b=0.821$$

A)&C)⇒A) $$a=\frac{6-3\cdot \frac{69}{84}}{9}=\frac{6}{9}-\frac{3\cdot69}{9\cdot84}\\a=0.393$$

$$\color{blue}{y=ax^2+bx+c\\y=0.393x^2+0.821x-5}$$

!

asinus  Apr 23, 2017