+0  
 
+5
1034
3
avatar+961 

What value of x satisfies the equation 6.4−2x−6.63x=610.5?

 Nov 18, 2014

Best Answer 

 #3
avatar+118723 
+10

What value of y satisfies the equation y3+14=512

$$y^3=512-14\\
y^3=498$$

$$y\approx 7.926$$

$${{\mathtt{y}}}^{{\mathtt{3}}} = {\mathtt{498}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{y}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{y}} = {{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{3.963\: \!204\: \!222\: \!244\: \!851\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.864\: \!471\: \!073\: \!704\: \!028\: \!8}}{i}\\
{\mathtt{y}} = {\mathtt{\,-\,}}\left({\mathtt{3.963\: \!204\: \!222\: \!244\: \!851\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.864\: \!471\: \!073\: \!704\: \!028\: \!8}}{i}\right)\\
{\mathtt{y}} = {\mathtt{7.926\: \!408\: \!444\: \!489\: \!703}}\\
\end{array} \right\}$$

 Nov 19, 2014
 #1
avatar+23254 
+10

6.4 - 2x - 6.63x  =  610.5

Combine the x-terms:

6.4 - 8.63x  =  610.5

Subtract 6.4 from both sides:

     - 8.63x  =  604.1

Divide both sides by -8.63:

       x  =  -71.66  (approximately)

 Nov 18, 2014
 #2
avatar+961 
0

What value of y satisfies the equation y3+14=512?

 Nov 18, 2014
 #3
avatar+118723 
+10
Best Answer

What value of y satisfies the equation y3+14=512

$$y^3=512-14\\
y^3=498$$

$$y\approx 7.926$$

$${{\mathtt{y}}}^{{\mathtt{3}}} = {\mathtt{498}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{i}{\mathtt{\,-\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{y}} = {\mathtt{\,-\,}}{\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}{i}{\mathtt{\,\small\textbf+\,}}{{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}{{\mathtt{2}}}}\\
{\mathtt{y}} = {{\mathtt{498}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{y}} = {\mathtt{\,-\,}}{\mathtt{3.963\: \!204\: \!222\: \!244\: \!851\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.864\: \!471\: \!073\: \!704\: \!028\: \!8}}{i}\\
{\mathtt{y}} = {\mathtt{\,-\,}}\left({\mathtt{3.963\: \!204\: \!222\: \!244\: \!851\: \!5}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6.864\: \!471\: \!073\: \!704\: \!028\: \!8}}{i}\right)\\
{\mathtt{y}} = {\mathtt{7.926\: \!408\: \!444\: \!489\: \!703}}\\
\end{array} \right\}$$

Melody Nov 19, 2014

0 Online Users