What values for theta (0<=theta<=2pi) satify the equation?
3 sin theta = sin theta - root3
\(0≤θ≤2π \) (1)
\(3sinθ=sinθ -\sqrt{3}<=> 3sinθ-sinθ= -\sqrt{3}<=> 2sinθ= -\sqrt{3} <=>sinθ= -\frac{\sqrt{3}}{2}<=>sinθ=-sin(\frac{π}{3}),sinθ=-sin(\frac{2π}{3})<=>sinθ=sin(-\frac{π}{3}),sinθ=sin(-\frac{2π}{3})\)
With (1) \(sinθ=sin(2π-\frac{π}{3}),sinθ=sin(2π-\frac{2π}{3})<=>sinθ=sin(\frac{5π}{3}),sinθ=sin(\frac{4π}{3}) <=>θ=\frac{5π}{3},θ=\frac{4π}{3}\)
So \(θ=\frac{5π}{3},θ=\frac{4π}{3}\)
\(3\sin\theta\ =\ \sin\theta-\sqrt3\\~\\ 3\sin\theta-\sin\theta\ =\ -\sqrt3\\~\\ 2\sin\theta\ =\ -\sqrt3\\~\\ \sin\theta\ =\ -\frac{\sqrt3}{2}\)
We can look at a unit circle to see what values of θ in the interval [0, 2π] will satisfy \(\sin\theta=-\frac{\sqrt3}{2}\) .
Here is a pretty clear unit circle:
https://en.wikibooks.org/wiki/Trigonometry/Trigonometric_Unit_Circle_and_Graph_Reference
\(\theta\ =\ \frac{4\pi}{3}\\~\\ \theta\ =\ \frac{5\pi}{3}\)
Exactly! You have something to add in my answer or there are something whitch don't tike you?
Thank you.