+0  
 
0
522
1
avatar

whats the answer for $${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$

 Dec 3, 2014

Best Answer 

 #1
avatar+118723 
+5

$${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$

 

=   $${{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{80}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}$$

 

 

=   $${{\mathtt{x}}}^{\left({\mathtt{4}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}$$

 

 

=      $${\frac{{{\mathtt{x}}}^{{\mathtt{4}}}}{{{\mathtt{y}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}}}$$

.
 Dec 3, 2014
 #1
avatar+118723 
+5
Best Answer

$${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$

 

=   $${{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{80}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}$$

 

 

=   $${{\mathtt{x}}}^{\left({\mathtt{4}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}$$

 

 

=      $${\frac{{{\mathtt{x}}}^{{\mathtt{4}}}}{{{\mathtt{y}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}}}$$

Melody Dec 3, 2014

1 Online Users

avatar