whats the answer for $${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$
$${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$
= $${{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{80}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}$$
= $${{\mathtt{x}}}^{\left({\mathtt{4}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}$$
= $${\frac{{{\mathtt{x}}}^{{\mathtt{4}}}}{{{\mathtt{y}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}}}$$
.$${\left({{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}{\frac{{\mathtt{3}}}{{\mathtt{8}}}}}\right)}^{{\mathtt{16}}}$$
= $${{\mathtt{x}}}^{\left({\frac{{\mathtt{1}}}{{\mathtt{4}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{80}}}}{\mathtt{\,\times\,}}{\mathtt{16}}\right)}$$
= $${{\mathtt{x}}}^{\left({\mathtt{4}}\right)}{\mathtt{\,\times\,}}{{\mathtt{y}}}^{{\mathtt{\,-\,}}\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}$$
= $${\frac{{{\mathtt{x}}}^{{\mathtt{4}}}}{{{\mathtt{y}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{5}}}}\right)}}}$$