We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
89
1
avatar

Given: Parallelogram MNPQ, M(3a-b,b) N(3a+b,3b) P(6a+4b,3a+3b)

Find: The quordiantes of point Q

 Dec 3, 2018
 #1
avatar+100439 
+1

Given: Parallelogram MNPQ, M(3a-b,b) N(3a+b,3b) P(6a+4b,3a+3b)

Find: The coordinates of point Q

 

The opposite sides are parallel

 

So....the slope between  MN is 

 

[ ( 3b - b) ]                           2b

_________________  =   _____  

[ (3a + b) - ( 3a - b)]            2b

 

 

And the slope joining PQ is the same....let (x,y) be the coordinates of Q

 

[ (3a + 3b)  - y]                      2b

__________________ =   ______ 

[ (6a + 4b) - x ]                      2b

 

This implies that  x = (6a + 2b)  and y = (3a + b)

 

So Q =   [ 6a + 2b , 3a + b ]

 

We can check this..since NP and MQ are parallel.....the slope of NP should = the slope of MQ

 

NP 

 

[ (3a + 3b) - 3b]                    3a                    a

_________________ =     _______  =      ____

[(6a + 4b) - (3a + b)]           3(a + b)            a + b

 

 

MQ

 

[ b - ( 3a + b) ]                          - 3a         -3a                      a

_________________  =        _____ =   ________   =    _____

[ (3a - b) - (6a +2b) ]             -3a -3b      -3 ( a + b)          a + b 

 

 

 

cool cool cool

 Dec 4, 2018

7 Online Users

avatar