+0  
 
0
114
1
avatar+217 

When N is divided by 10, the remainder is a. When N is divided by 13, the remainder is b. What is N modulo 130, in terms of a and b?

(Your answer should be in the form ra+sb, where r and s are replaced by nonnegative integers less than 130.)

yasbib555  Aug 9, 2018

Best Answer 

 #1
avatar+20597 
+1

When N is divided by 10, the remainder is a. When N is divided by 13, the remainder is b.
What is N modulo 130, in terms of a and b?
(Your answer should be in the form ra+sb, where r and s are replaced by nonnegative integers less than 130.)

 

\(\begin{array}{|rclcl|} \hline N &\equiv& a \pmod{10} \quad &\text{or}& \quad N= a+10n,\ n \in Z \\ N &\equiv& b \pmod{13} \quad &\text{or}& \quad N= a+13m,\ m \in Z \\ \\ \hline \\ N = a+10n &=& b+13m \\ 10n &=& 13m+b-a \\\\ \mathbf{n} & \mathbf{=}& \mathbf{\dfrac{13m+b-a}{10}} \\\\ n &=& \dfrac{10m+3m+b-a}{10} \\\\ n &=& \dfrac{10m}{10} +\dfrac{3m+b-a}{10} \\\\ n &=& m +\underbrace{\dfrac{3m+b-a}{10}}_{=c} \\\\ c &=& \dfrac{3m+b-a}{10} \\\\ 10c &=& 3m+b-a \\\\ 3m &=& 10c+a-b \\\\ m &=& \dfrac{10c+a-b}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \\\\ m &=& \dfrac{9c+c+a-b}{3} \\\\ m &=& \dfrac{9c}{3} + \dfrac{c+a-b}{3} \\\\ m &=& 3c + \underbrace{\dfrac{c+a-b}{3}}_{=d} \\\\ d &=& \dfrac{c+a-b}{3} \\\\ 3d &=& c+a-b \\\\ \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\ \hline \end{array} \)

 

\(\mathbf{m=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \quad & | \quad \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\\\ m &=& \dfrac{10(3d+b-a)+a-b}{3} \\\\ m &=& \dfrac{30d+10b-10a+a-b}{3} \\\\ m &=& \dfrac{30d+9b-9a}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ \hline \end{array}\)

 

\(\mathbf{N=\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& b+13m \quad & | \quad \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ N &=& b+13(10d+3b-3a) \\ N &=& 130d -39a + 40b \\ \hline \end{array}\)

 

\(\mathbf{N \pmod{130} =\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& 130d -39a + 40b \quad & | \quad \pmod{130} \\ N &\equiv& 0 -39a + 40b \pmod{130} \\ N &\equiv& -39a + 130a + 40b \pmod{130} \\ \mathbf{N} & \mathbf{\equiv} & \mathbf{91a + 40b \pmod{130}} \\ \hline \end{array}\)

 

\(N \pmod{130} = 91a + 40b\)

 

laugh

heureka  Aug 10, 2018
 #1
avatar+20597 
+1
Best Answer

When N is divided by 10, the remainder is a. When N is divided by 13, the remainder is b.
What is N modulo 130, in terms of a and b?
(Your answer should be in the form ra+sb, where r and s are replaced by nonnegative integers less than 130.)

 

\(\begin{array}{|rclcl|} \hline N &\equiv& a \pmod{10} \quad &\text{or}& \quad N= a+10n,\ n \in Z \\ N &\equiv& b \pmod{13} \quad &\text{or}& \quad N= a+13m,\ m \in Z \\ \\ \hline \\ N = a+10n &=& b+13m \\ 10n &=& 13m+b-a \\\\ \mathbf{n} & \mathbf{=}& \mathbf{\dfrac{13m+b-a}{10}} \\\\ n &=& \dfrac{10m+3m+b-a}{10} \\\\ n &=& \dfrac{10m}{10} +\dfrac{3m+b-a}{10} \\\\ n &=& m +\underbrace{\dfrac{3m+b-a}{10}}_{=c} \\\\ c &=& \dfrac{3m+b-a}{10} \\\\ 10c &=& 3m+b-a \\\\ 3m &=& 10c+a-b \\\\ m &=& \dfrac{10c+a-b}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \\\\ m &=& \dfrac{9c+c+a-b}{3} \\\\ m &=& \dfrac{9c}{3} + \dfrac{c+a-b}{3} \\\\ m &=& 3c + \underbrace{\dfrac{c+a-b}{3}}_{=d} \\\\ d &=& \dfrac{c+a-b}{3} \\\\ 3d &=& c+a-b \\\\ \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\ \hline \end{array} \)

 

\(\mathbf{m=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \quad & | \quad \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\\\ m &=& \dfrac{10(3d+b-a)+a-b}{3} \\\\ m &=& \dfrac{30d+10b-10a+a-b}{3} \\\\ m &=& \dfrac{30d+9b-9a}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ \hline \end{array}\)

 

\(\mathbf{N=\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& b+13m \quad & | \quad \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ N &=& b+13(10d+3b-3a) \\ N &=& 130d -39a + 40b \\ \hline \end{array}\)

 

\(\mathbf{N \pmod{130} =\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& 130d -39a + 40b \quad & | \quad \pmod{130} \\ N &\equiv& 0 -39a + 40b \pmod{130} \\ N &\equiv& -39a + 130a + 40b \pmod{130} \\ \mathbf{N} & \mathbf{\equiv} & \mathbf{91a + 40b \pmod{130}} \\ \hline \end{array}\)

 

\(N \pmod{130} = 91a + 40b\)

 

laugh

heureka  Aug 10, 2018

40 Online Users

avatar
avatar
avatar
avatar
avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.