When the fraction 1/288 is expressed in base 12, is it terminating or repeating? Explain.
1/288 =0.003472222222 in base 10
0.003472222222222222 x12 =0.04166666 =0.0 in base 12
0.04166666 x 12 =0.5 in base 12=0.00 in base 12
0.5 x 12 =6 =0.006 base12. So, we have:
1/288 =0.006 in base 12 and it terminates.
That is really cluey guest. I have not done a problem like this in yonks.
Here is another way to look at it.
1288base10=12∗102+8∗10+8base10
But we want to try and convert this to base 12
288 is much bigger than 12 but how does it compare to 12^2
288=2*144=2*12^2
so
Since 288 is a multiple of a power of 12 then 1/288 MUST be a terminating decimal in base 12
END OF QUESTION
------------------------------------------------
So what it it???
128810=12∗122(base10)=12of0.01(base12)=0.00612(because half of 12 is 6)or123=1728and1728÷288=6so128810=11236base10=6123base10=0.00612
When the fraction 1/288 is expressed in base 12,
is it terminating or repeating? Explain.
1288=a⋅12−1+b⋅12−2+c⋅12−3+d⋅12−4+e⋅12−5…|⋅1212288=124=a+b⋅12−1+c⋅12−2+d⋅12−3+e⋅12−4…⏟decimal places=124integer(124)=a⇒a=0124−a=b⋅12−1+c⋅12−2+d⋅12−3+e⋅12−4…124−0=b⋅12−1+c⋅12−2+d⋅12−3+e⋅12−4…124=b⋅12−1+c⋅12−2+d⋅12−3+e⋅12−4…|⋅121224=12=b+c⋅12−1+d⋅12−2+e⋅12−3…⏟decimal places=12integer(12)=b⇒b=012−b=c⋅12−1+d⋅12−2+e⋅12−3…12−0=c⋅12−1+d⋅12−2+e⋅12−3…12=c⋅12−1+d⋅12−2+e⋅12−3…|⋅12122=6.0000000…=c+d⋅12−1+e⋅12−2…⏟decimal places=0integer(6.0000000…)=c⇒c=61288=0.00612