+0  
 
0
985
2
avatar

which data set best describe by the function y=2x squared+5x

 Apr 22, 2014

Best Answer 

 #2
avatar+118723 
+5

$$y=2x^2+5x\\
\mbox{ It is a concave up parabola because the coeffeicient of } x^2 \mbox{ is positive}\\
y=x(2x+5)\\$$

When y=0 x=0 or x=-5/2 

So the roots are x=0 and x=-5/2

The axis of symmetry is the average of the 2 roots x=-5/4

When x=-5/4

$$y=2\times\frac{25}{16}+5\times\frac{-5}{4}\\\\
y=\frac{25}{8}+\frac{-25}{4}\\\\
y=\frac{25}{8}+\frac{-50}8}\\\\
y=\frac{-25}{8}\\\\
\mbox{ therefore}\\\\
\mbox{Vertex is }\left(-1\frac{1}{4},-3\frac{1}{8}\right)$$

Just as CPhill said.    

 Apr 23, 2014
 #1
avatar+130511 
+5

Re: which data set best describe by the function y=2x squared+5x

-----------------------------------------------------------------------------------------------------

It's a parabola opening "upward' with its vertex at (-1.25, -3,125) 

 Apr 22, 2014
 #2
avatar+118723 
+5
Best Answer

$$y=2x^2+5x\\
\mbox{ It is a concave up parabola because the coeffeicient of } x^2 \mbox{ is positive}\\
y=x(2x+5)\\$$

When y=0 x=0 or x=-5/2 

So the roots are x=0 and x=-5/2

The axis of symmetry is the average of the 2 roots x=-5/4

When x=-5/4

$$y=2\times\frac{25}{16}+5\times\frac{-5}{4}\\\\
y=\frac{25}{8}+\frac{-25}{4}\\\\
y=\frac{25}{8}+\frac{-50}8}\\\\
y=\frac{-25}{8}\\\\
\mbox{ therefore}\\\\
\mbox{Vertex is }\left(-1\frac{1}{4},-3\frac{1}{8}\right)$$

Just as CPhill said.    

Melody Apr 23, 2014

1 Online Users

avatar