We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
66
2
avatar

The sum of the squares of 2 consecutive negative integers is 41. What are the numbers?
Which of the following equations is the result of using the factoring method to solve the problem?

 

(n - 5)(n - 4) = 0

(n - 5)(n + 4) = 0

(n + 5)(n - 4) = 0

(n + 5)(n + 4) = 0

 

There are two factors of -36 such that one factor is 11 less than half of the other factor. Choose all the pairs of these factors.

 

-2 and 18

-6 and 6

3 and -12

4 and -9

 Jan 18, 2019
 #1
avatar+99351 
+1

First one....we have that

 

n^2 + ( n + 1)^2  =  41

 

n^2 + n^2 + 2n + 1 = 41

 

2n^2 + 2n - 40  = 0

 

n^2 + n  - 20 =  0

 

(n  + 5) ( n - 4) = 0

 

Second one

 

Call the first factor, F

So...the second is   F/2 - 11

 

So.....this implies that

 

(F)  [ (F/2) - 11]   = -36       simplify

 

F^2/2 - 11F = - 36

 

F^2/2 - 11F + 36 = 0         multiply through by 2

 

F^2 - 22F + 72 = 0

 

(F - 18) ( F - 4)  = 0

 

F = 18      or F = 4

 

When F = 18    the other factor is :  F/2 - 11   =  18/2 - 11  =  9 - 11 =   -2

When F = 4    the other factor is   4/2 - 11 =  2 - 11  =  -9

 

So....the factors are

 

(18, -2)   and ( 4, - 9)

 

 

cool cool cool

 Jan 18, 2019
 #2
avatar
0

Which of the following equations is the result of using the factoring method to solve the problem?

 

(n - 5)(n - 4) = 0

(n - 5)(n + 4) = 0

(n + 5)(n - 4) = 0

(n + 5)(n + 4) = 0

 

 

(n - 5)(n - 4)  = 0,     This comes from this quadratic:  n^2 - 9 n + 20 = 0
(n - 5)(n + 4) = 0,     This comes from this quadratic:  n^2 - n - 20 = 0
(n + 5)(n - 4) = 0,     This comes from this quadratic:  n^2 + n - 20 = 0
(n + 5)(n + 4) =0,     This comes from this quadratic:  n^2 + 9 n + 20 = 0

 Jan 18, 2019

7 Online Users

avatar
avatar