Which of these is the general solution for \(−\sqrt{3}sec\theta =2 \) ? Is it \(\frac{5\pi}{6} +2\pi n\) or is it \(\frac{7\pi}{6} +2\pi n\)? I'm so confused, is it \(\frac{5\pi}{6} +2\pi n\) because it is less?\(\)\(\)
\(-\sqrt{3}sec(\theta)=2\\ -\sqrt{3}\cdot \dfrac{1}{cos(\theta)}=2\\ cos(\theta)=\dfrac{-\sqrt{3}}{2}\\ \theta =\dfrac{\pi}{180^{\circ}}\cdot (\arccos\dfrac{-\sqrt{3}}{2})+2\pi n\\ \theta =\dfrac{\pi}{180^{\circ}}\cdot (150^{\circ})+2\pi n\\ \color{blue}\theta=\dfrac{5\pi}{6}+2\pi n\)
Multiply the DEG-result of \(\arccos \dfrac{-\sqrt{3}}{2} \ by\ \dfrac{\pi}{180^{\circ}}(=1)\) to express it as a fraction. To express the multiple result of \(\arccos \dfrac{-\sqrt{3}}{2}\) add \(2\pi n.\)
!