+0

# Which statement best explains conditional probability and independence?

0
1519
1

Which statement best explains conditional probability and independence?

A: When two separate events, A and B, are independent, P(A|B)=P(B) . This means that the probability that event A occurred first has no effect on the probability of event B occurring next.

B: When two separate events, A and B, are independent, the probability of either event occurring is the same. Therefore, P(A)=P(B) and P(A|B)=P(B) .

C: When two separate events, A and B, are independent, the probability of either event occurring is the same. Therefore, P(A)=P(B) and P(A|B)=P(A) .

D: When two separate events, A and B, are independent, P(A|B)=P(A) . This means that the probability that event B occurred first has no effect on the probability of event A occurring next.

Apr 21, 2018

#1
+101322
+2

D: When two separate events, A and B, are independent, P(A|B)=P(A) . This means that the probability that event B occurred first has no effect on the probability of event A occurring next.

Apr 21, 2018