Why do I get the result 0 when I input $${\frac{{{\mathtt{35}}}^{{\mathtt{2}}}}{{\left({\mathtt{8.574}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{10}}}\right)}^{{\mathtt{2}}}}}$$ to the calculator? I should get approx. $${\mathtt{1.7}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{-{\mathtt{19}}}$$
Okay the calc does give you 0
$${\frac{{{\mathtt{35}}}^{{\mathtt{2}}}}{{\left({\mathtt{8.574}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{10}}}\right)}^{{\mathtt{2}}}}} = {\mathtt{0}}$$
Lets have a look by breaking it up
$${{\mathtt{35}}}^{{\mathtt{2}}} = {\mathtt{1\,225}}$$
$${{\mathtt{8.574}}}^{{\mathtt{2}}} = {\mathtt{73.513\: \!476}}$$
$$=\frac{1225}{73.513476\times 10^{20}}
=\frac{1225\times 10^{-20}}{73.513476}$$
$${\frac{{\mathtt{1\,225}}}{{\mathtt{73.513\: \!476}}}} = {\mathtt{16.663\: \!611\: \!444\: \!519\: \!369\: \!5}}$$
$$\\=\frac{1225}{73.513476\times 10^{20}}\\
=\frac{1225\times 10^{-20}}{73.513476}\\
=16.6636\times 10^{-20}\\
=1.66636\times 10^{+1}\times 10^{-20}\\
=1.66636\times 10^{-19}\\$$
okay, this is NOT zero the calculator called it zero because the number is tiny. Too tiny for the calc to display properly.
Okay the calc does give you 0
$${\frac{{{\mathtt{35}}}^{{\mathtt{2}}}}{{\left({\mathtt{8.574}}{\mathtt{\,\times\,}}{{\mathtt{10}}}^{{\mathtt{10}}}\right)}^{{\mathtt{2}}}}} = {\mathtt{0}}$$
Lets have a look by breaking it up
$${{\mathtt{35}}}^{{\mathtt{2}}} = {\mathtt{1\,225}}$$
$${{\mathtt{8.574}}}^{{\mathtt{2}}} = {\mathtt{73.513\: \!476}}$$
$$=\frac{1225}{73.513476\times 10^{20}}
=\frac{1225\times 10^{-20}}{73.513476}$$
$${\frac{{\mathtt{1\,225}}}{{\mathtt{73.513\: \!476}}}} = {\mathtt{16.663\: \!611\: \!444\: \!519\: \!369\: \!5}}$$
$$\\=\frac{1225}{73.513476\times 10^{20}}\\
=\frac{1225\times 10^{-20}}{73.513476}\\
=16.6636\times 10^{-20}\\
=1.66636\times 10^{+1}\times 10^{-20}\\
=1.66636\times 10^{-19}\\$$
okay, this is NOT zero the calculator called it zero because the number is tiny. Too tiny for the calc to display properly.