$${{\mathtt{5}}}^{{\mathtt{a}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{b}}} = {{\mathtt{5}}}^{\left({\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}$$
$${{\mathtt{5}}}^{{\mathtt{3}}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}$$
$${{\mathtt{5}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{1}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$
$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{-{\mathtt{3}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}$$ = $${{\mathtt{5}}}^{{\mathtt{0}}}$$
$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$ = 1
$${{\mathtt{5}}}^{{\mathtt{0}}} = {\mathtt{1}}$$
.$${{\mathtt{5}}}^{{\mathtt{a}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{{\mathtt{b}}} = {{\mathtt{5}}}^{\left({\mathtt{a}}{\mathtt{\,\small\textbf+\,}}{\mathtt{b}}\right)}$$
$${{\mathtt{5}}}^{{\mathtt{3}}} = {\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}$$
$${{\mathtt{5}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{1}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$
$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{-{\mathtt{3}}} = {{\mathtt{5}}}^{\left({\mathtt{3}}{\mathtt{\,-\,}}{\mathtt{3}}\right)}$$ = $${{\mathtt{5}}}^{{\mathtt{0}}}$$
$${{\mathtt{5}}}^{{\mathtt{3}}}{\mathtt{\,\times\,}}{{\mathtt{5}}}^{-{\mathtt{3}}} = {\frac{{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}}{\left({\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}{\mathtt{\,\times\,}}{\mathtt{5}}\right)}}$$ = 1
$${{\mathtt{5}}}^{{\mathtt{0}}} = {\mathtt{1}}$$