We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
893
2
avatar

Why does log 2ab + log 5/a - log10b = 0 ?

math
 Aug 27, 2014

Best Answer 

 #1
avatar+105634 
+13

$$\\log 2ab + log 5/a - log10b = 0\\\\
LHS\\
=log\left(\frac{2ab\times \frac{5}{a}}{10b}\right)\\\\
=log\left(\frac{10b}{10b}\right)\\
=log\left(1\right)\\
=0\\
=RHS$$

.
 Aug 27, 2014
 #1
avatar+105634 
+13
Best Answer

$$\\log 2ab + log 5/a - log10b = 0\\\\
LHS\\
=log\left(\frac{2ab\times \frac{5}{a}}{10b}\right)\\\\
=log\left(\frac{10b}{10b}\right)\\
=log\left(1\right)\\
=0\\
=RHS$$

Melody Aug 27, 2014
 #2
avatar+28186 
+10

A property of logarithms is that log(x*y) = log(x) + log(y)

Another is that  log(x-1) = -log(x)

 

So:  log(2*a*b) = log(2) + log(a) + log(b)

       log(5/a) = log(5) + log(1/a) = log(5) - log(a)    (as 1/a = a-1)

      log(10*b) = log(10) + log(b)

 

Therefore: log(2*a*b) + log(5/a) - log(10*b) =  log(2) + log(a) + log(b) + log(5) - log(a) - log(10) - log(b)

                                                                      = log(2) + log(5) - log(10) 

                                                                      = log(10) - log(10)

                                                                      = 0

 

I see Melody beat me to it (with a slightly different approach)!

 Aug 27, 2014

19 Online Users

avatar
avatar
avatar