We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
53
5
avatar

Decide the third point in a equal sided triangle

 

I have the point (-1,-1) and (3,1) with this i could decide the equation of the line going through theese points which is y = (1/2)x - 1/2

doing -1/x i get y=-2x+2 which is a line through the center between these points. How can i decide the remaining (2) points which will have the same distances to point b and a? I'm supposed to use the distance formula. 

 

Answer sheet says it's (1+√3, -2√3) and 1-√3, 2√3)

 Apr 17, 2019
 #1
avatar+4223 
+1

It's an equilateral triangle.

 

The distance formula is \(\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}.\)

.
 Apr 17, 2019
 #2
avatar+18360 
+2

Strong Work so far!    I will use your results to proceed:

 

The didstance between the 2 given pionts is  sqrt 20

set up a circle centered at  -1, -1  with radius  sqrt 20

(x+1)^2 + (y+1)^2 = r^2 = 20     

to find the point(s) on the given perpindicular line, sub in y = -2x+2 into the circle equation

 

(x+1)^2 + (-2x+2 + 1)^2 = 20    expand and simplify to get

5x^2 - 10x -10 = 0     Quadratic fomula gives   x = 1 +- sqrt(3)      use these values to sub into the perpindicular line equation to find the correspondine 'y' values ....

 Apr 17, 2019
 #3
avatar+100571 
+2

Here's a way to do this

 

Find the distance^2 between both points.....we have

 

D^2  =  (-1 - 3)^2  + (-1 - 1)^2   =  4^2 + 2^2  =  20

 

Now.....construct two  circles   with centers at the two points and a radius of D^2

 

So.....we have

 

(x + 1)^2 + (y + 1)^2  = 20

(x - 3)^2 + ( y - 1)^2  = 20

 

Set these equal

 

(x + 1)^2  + (y + 1)^2  = (x - 3)^2 + ( y - 1)^2   simplify

 

x^2 + 2x + 1 + y^2 + 2y + 1  = x^2 - 6x + 9 + y^2 - 2y + 1

 

2x + 2y + 2  =   -6x - 2y + 10     divide through by 2

 

x + y + 1  =  -3x - y + 5

 

2y = - 4x + 4    divide through by 2

 

y  =  -2x + 2

 

y = 2 - 2x         (1)

 

Sub this into the equation for either circle for y

 

(x+ 1)^2  + ( 2 - 2x + 1)^2  = 20

(x+ 1)^2 + (3 - 2x)^2  = 20

x^2 + 2x + 1 + 4x^2 - 12x + 9  = 20

5x^2 - 10x + 10 = 20       divide through by 5

x^2 - 2x + 2 = 4

x^2  - 2x  = 2        complete the square on x   [ you can also use the quadratic formula ]

x^2 - 2x + 1  = 3

(x - 1)^2  = 3      take both roots

x - 1  = ±√3   add 1 to both sides

x  =  1±√3

 

So   

x  = 1+ √3      or x  = 1  - √3

 

And using (1)....we can find y as either

 

2 - 2 [ 1+ √3]   =   -2√3    and    2 - 2 [ 1 - √3]  = 2√3

 

So....the two other possible points are

 

( 1 +√3, -2√3 )   and  ( 1 - √3,  2√3 )

 

 

 

cool cool cool

 Apr 17, 2019
 #4
avatar+100571 
+1

Thanks, tertre and EP.....!!!!

 

 

cool cool cool

 Apr 17, 2019
 #5
avatar+18360 
+1

FYI....picture:

 

 Apr 17, 2019

13 Online Users

avatar
avatar
avatar
avatar
avatar