find the exact value without using a calculator
sec 150°
cos 300°
csc (-3π/4)
sec(150°) = 1/ cos (150° ) = 1 / [ -√3 / 2] = -2 / √3
cos(300°) = 1/2
csc (-3pi / 4) = csc (-135°) = csc(360° - 135°) = csc ( 225° ) =
1 / sin (225°) = 1 / [-1 / √2 ] = - √2
\(sec(150°)\)
\(\frac{1}{cos(150°)}\)
\(\frac{1}{\frac{-\sqrt{3}}{2}}\)
\(1\times(-\frac{2}{\sqrt{3}})\)
\(-\frac{2}{\sqrt{3}}\)
\(-\frac{2\sqrt{3}}{3}\)
\(cos(300°)\)
\(\frac{1}{2}\)
\(csc(-\frac{3\pi}{4})\)
\(\frac{1}{sin(-\frac{3\pi}{4})}\)
\(\frac{1}{-\frac{\sqrt{2}}{2}}\)
\(1\times(-\frac{2}{\sqrt{2}})\)
\(-\frac{2}{\sqrt{2}}\)
\(-\frac{2\sqrt{2}}{2}\)
\(-\sqrt{2}\)
.