This doesn't factor nicely, so you'll need to use the quadratic equation.
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{11}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{3}}\\
{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{3}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{7.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
{\mathtt{x}} = {\mathtt{1.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
\end{array} \right\}$$
.
This doesn't factor nicely, so you'll need to use the quadratic equation.
$${{\mathtt{x}}}^{{\mathtt{2}}}{\mathtt{\,\small\textbf+\,}}{\mathtt{6}}{\mathtt{\,\times\,}}{\mathtt{x}}{\mathtt{\,-\,}}{\mathtt{11}} = {\mathtt{0}} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = {\mathtt{\,-\,}}{\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{3}}\\
{\mathtt{x}} = {\mathtt{2}}{\mathtt{\,\times\,}}{\sqrt{{\mathtt{5}}}}{\mathtt{\,-\,}}{\mathtt{3}}\\
\end{array} \right\} \Rightarrow \left\{ \begin{array}{l}{\mathtt{x}} = -{\mathtt{7.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
{\mathtt{x}} = {\mathtt{1.472\: \!135\: \!954\: \!999\: \!579\: \!4}}\\
\end{array} \right\}$$
.