+0  
 
0
555
3
avatar

x^2+x>1/e^4

Guest Dec 26, 2015

Best Answer 

 #3
avatar+91160 
+10

x^2+x >1/e^4        make this an equality and complete the square

 

x^2 + x + 1/4 = 1/e^4 + 1/4       factor the left side, simplify the right

 

(x + 1/2)^2  = [ 4 + e^4] / [4e^4)   take the square root of both sides

 

x + 1/2  =  +/- sqrt [ 4 + e^4] / [2e^2]

 

x = +/- sqrt [ 4 + e^4] / [ 2e^2] - 1/2  ≈  [ -1.0179919293664084, 0.0179919293664084 ]

 

The answer  will come from one or more of these intervals

 

(-infinity, - sqrt [ 4 + e^4] / [ 2e^2] - 1/2) , (- sqrt [ 4 + e^4] / [ 2e^2] - 1/2,  sqrt [ 4 + e^4] / [ 2e^2] - 1/2), ( sqrt [ 4 + e^4] / [ 2e^2] - 1/2, infinity)

 

Choosing 0 as a test point for the middle interval will make the inequality false

 

So.....the two outside intervals solve the inequality

 

Here's the graph that proves this........https://www.desmos.com/calculator/iluvf1vudp

 

 

 

cool cool cool

CPhill  Dec 26, 2015
 #1
avatar
0

x^2+x>1/e^4

 

=x>sqrt(4+e^4)/(2e^2)-1/2

Guest Dec 26, 2015
 #2
avatar
+5

 in last link you will find your answer by stepwise 

https://www.symbolab.com 

Guest Dec 26, 2015
 #3
avatar+91160 
+10
Best Answer

x^2+x >1/e^4        make this an equality and complete the square

 

x^2 + x + 1/4 = 1/e^4 + 1/4       factor the left side, simplify the right

 

(x + 1/2)^2  = [ 4 + e^4] / [4e^4)   take the square root of both sides

 

x + 1/2  =  +/- sqrt [ 4 + e^4] / [2e^2]

 

x = +/- sqrt [ 4 + e^4] / [ 2e^2] - 1/2  ≈  [ -1.0179919293664084, 0.0179919293664084 ]

 

The answer  will come from one or more of these intervals

 

(-infinity, - sqrt [ 4 + e^4] / [ 2e^2] - 1/2) , (- sqrt [ 4 + e^4] / [ 2e^2] - 1/2,  sqrt [ 4 + e^4] / [ 2e^2] - 1/2), ( sqrt [ 4 + e^4] / [ 2e^2] - 1/2, infinity)

 

Choosing 0 as a test point for the middle interval will make the inequality false

 

So.....the two outside intervals solve the inequality

 

Here's the graph that proves this........https://www.desmos.com/calculator/iluvf1vudp

 

 

 

cool cool cool

CPhill  Dec 26, 2015

14 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.