+0

# x= 4-x/y^2-x

0
149
1

x= 4-x/y^2-x

How many ordered pairs of positive integers (x,y) satisfy the equation above.

a) 0

b) 1

c) 2

d) 3

e) 4

Guest Jan 2, 2018
Sort:

#1
+85753
+1

x =  (4 - x) / (y^2 - x)

y^2x  - x^2  =   4 - x

y^2x  =   x^2 - x  +   4

y^2  =   [ x^2  -  x  +  4 ]  /  x

y^2  =  x  -  1   +  4/x

Notice  that  the first two terms always result in an integer for any integer value of x

But   4/x     is only an integer  when x  =  ±1, ±2 or ±4

But we can reject  the negative values  because  they make the right side negative.....so y is not a real number  for these values

And when x = 2,  y  = ±√3    which isn't an integer pair

So.....when  x  =  1,  y   = ±2

And when  x  =   4,  y   = ±2

So......the ordered pairs of positive integers that make this true  are  (1,2), (-1,2), (4, 2)  and (4 , -2)

CPhill  Jan 2, 2018
edited by CPhill  Jan 3, 2018

### 25 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details