(x-(i-1))*(x-(i+1))
$$\small{\text{ $(x-(i-1))*(x-(i+1)) =[(x-i)+1] [(x-i)-1]= (x-i)^2-1$}}\\ \small{\text{$=x^2-2xi+i^2-1 \quad | \quad i^2=-1$}}\\\small{\text{$=x^2-2xi-2 = (x^2-2) - 2xi $}}$$
$$\\(x-(i-1))*(x-(i+1))\\ =x^2-x(i+1)-x(i-1)+(i^2-1)\\ =x^2-xi-x-xi+x+(-1-1)\\ =x^2-2xi-2\\ =x^2-2-2xi$$