So, we have.....
x^3 + x^2 = 230
It might be a little hard to find the soultion, algebraically.....we could use somerhing called "Newton's Method" to approximate a solution, but I prefer a graph......
https://www.desmos.com/calculator/1jhpsyi4hl
The solution occurs at about (5.78, 230)
So, we have.....
x^3 + x^2 = 230
It might be a little hard to find the soultion, algebraically.....we could use somerhing called "Newton's Method" to approximate a solution, but I prefer a graph......
https://www.desmos.com/calculator/1jhpsyi4hl
The solution occurs at about (5.78, 230)
$$\left\{ \begin{array}{l}{\mathtt{x}} = \left({\frac{\left(\left({\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\right){\mathtt{\,\small\textbf+\,}}{\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left({\mathtt{\,-\,}}\left({\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)\\
{\mathtt{x}} = {\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}{\mathtt{\,\times\,}}\left(\left({\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)\right){\mathtt{\,\small\textbf+\,}}\left({\frac{\left({\mathtt{\,-\,}}\left({\frac{\left({\sqrt{{\mathtt{3}}}}{\mathtt{\,\times\,}}{i}\right)}{{\mathtt{2}}}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{2}}}}\right)\right)}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)\\
{\mathtt{x}} = \left({\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{1}}}{\left({\mathtt{9}}{\mathtt{\,\times\,}}{\left(\left({\frac{{\sqrt{{\mathtt{356\,845}}}}}{{{\mathtt{3}}}^{\left({\frac{{\mathtt{3}}}{{\mathtt{2}}}}\right)}}}\right){\mathtt{\,\small\textbf+\,}}\left({\frac{{\mathtt{3\,104}}}{{\mathtt{27}}}}\right)\right)}^{\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)}\right)}}\right){\mathtt{\,-\,}}\left({\frac{{\mathtt{1}}}{{\mathtt{3}}}}\right)\\
\end{array} \right\}$$