+0

y''-4y'+3y=0 y(0)=0 and y'(0)=-1

0
116
1

y''-4y'+3y=0
y(0)=0 and y'(0)=-1

Guest May 23, 2017
Sort:

#1
+75344
+1

y''-4y'+3y=0             y(0)=0 and y'(0)=-1

We can solve this by letting the general solution be

y(t)  =  C1 e r1t  +  C2 e r2t

And  we can find r1  and r2 thusly

(r  - 3)  ( r - 1)  =  0         setting  both factors to 0 and solving for r  we have that r1   = 3  and r2  = 1

So......the general solution is :

y(t)  =  C1 e3t  +  C2 e1t      and

y' (t)  = 3Ci e 3t  +  C2 e 1t

Applying the initial conditions, we have that

0  =  C1  + C2     →    C2  =  - C1     (1)

-1  = 3C1  + C2       (2)

Subbing  (1)  into (2)  we have that

-1  =  3C1  -  C1

-1  =  2C1

-1/2  = C1    →    C2  = -C1  =  1/2

So......the actual solution is

y(t)  =  (-1/2) e 3t   +  (1/2) e1t

CPhill  May 23, 2017
edited by CPhill  May 23, 2017

20 Online Users

We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  See details