We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
0
148
2
avatar

y=sqrt(3-sqrt(x)) y'=?

 Jun 25, 2019

Best Answer 

 #1
avatar+8810 
+4

\(y\ =\ \sqrt{3-\sqrt{x}}\\~\\ y\ =\ (3-x^\frac12)^\frac12\\~\\ y'\ =\ \frac{d}{dx}(3-x^\frac12)^\frac12\)

 

Using the power rule and chain rule,

 

\(y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ \frac{d}{dx}(3-x^\frac12)\ )\\~\\ y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ \frac{d}{dx}3-\frac{d}{dx}x^\frac12\ )\\~\\ y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ 0-\frac12x^{-\frac12}\ )\)

 

And we can rewrite the right side of the equation like this:

 

\( y'\ =\ \dfrac{-1}{4\,\cdot\,\sqrt{3-\sqrt{x}}\,\cdot\,\sqrt{x}} \)_

 Jun 25, 2019
 #1
avatar+8810 
+4
Best Answer

\(y\ =\ \sqrt{3-\sqrt{x}}\\~\\ y\ =\ (3-x^\frac12)^\frac12\\~\\ y'\ =\ \frac{d}{dx}(3-x^\frac12)^\frac12\)

 

Using the power rule and chain rule,

 

\(y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ \frac{d}{dx}(3-x^\frac12)\ )\\~\\ y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ \frac{d}{dx}3-\frac{d}{dx}x^\frac12\ )\\~\\ y'\ =\ \frac12(3-x^\frac12)^{-\frac12}(\ 0-\frac12x^{-\frac12}\ )\)

 

And we can rewrite the right side of the equation like this:

 

\( y'\ =\ \dfrac{-1}{4\,\cdot\,\sqrt{3-\sqrt{x}}\,\cdot\,\sqrt{x}} \)_

hectictar Jun 25, 2019
 #2
avatar+23353 
+3

y=\(\sqrt{3-\sqrt{x}} \)

\(y'=\ ?\)

 

\(\begin{array}{|rcll|} \hline y &=& \sqrt{3-\sqrt{x}} \\ y^2 &=& 3-\sqrt{x} \quad | \quad \text{derivate both sides} \\\\ 2yy' &=& -\dfrac{d\ ( \sqrt{x})}{dx} \\\\ 2yy' &=& -\dfrac{d\ (x^{\frac12})}{dx} \\\\ 2yy' &=& -\dfrac{1}{2} x^{-\frac{1}{2}} \\\\ 2yy' &=& -\dfrac{1}{2x^{\frac{1}{2}}} \\\\ 2yy' &=& -\dfrac{1}{2\sqrt{x}} \\\\ y' &=& -\dfrac{1}{2\sqrt{x}2y} \\\\ y' &=& -\dfrac{1}{4\sqrt{x} y} \\\\ \mathbf{y'} &=& \mathbf{-\dfrac{1}{4\sqrt{x} \sqrt{3-\sqrt{x}}}} \\ \hline \end{array}\)

 

laugh

 Jun 26, 2019

5 Online Users

avatar