+0  
 
0
382
2
avatar

If y = x3  the x = y1/3

Find the derivative of dy/dx and dx/dy, and henc show that dy/dx * dx/dy = 1.

 

My derivatives were: 3x2 and 1/ (3 root3of(y2))

When I multiplied them together I got: x2 / root3of(y2)). Where I got stuck.

 

Can you show me the correct answer? 

Thanks.

Guest Jul 26, 2017
edited by Guest  Jul 26, 2017

Best Answer 

 #1
avatar+27222 
+3

As follows:

 

\(y=x^3\quad \frac{dy}{dx}=3x^2\\x=y^{1/3}\quad \frac{dx}{dy}=\frac{1}{3}y^{-2/3}\rightarrow \frac{1}{3y^{2/3}} \rightarrow \frac{1}{3(y^{1/3})^2}\rightarrow \frac{1}{3x^2}\)

 

Now you should be able to see that dy/dx*dx/dy = 1

.

Alan  Jul 26, 2017
 #1
avatar+27222 
+3
Best Answer

As follows:

 

\(y=x^3\quad \frac{dy}{dx}=3x^2\\x=y^{1/3}\quad \frac{dx}{dy}=\frac{1}{3}y^{-2/3}\rightarrow \frac{1}{3y^{2/3}} \rightarrow \frac{1}{3(y^{1/3})^2}\rightarrow \frac{1}{3x^2}\)

 

Now you should be able to see that dy/dx*dx/dy = 1

.

Alan  Jul 26, 2017
 #2
avatar
-1

                           x+y

Guest Jul 27, 2017

18 Online Users

avatar
avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.