+0  
 
0
192
2
avatar+3039 

The expression \(x^2 + 3x - 28\) can be written as \((x + a)(x - b),\) and the expression \(x^2 - 10x - 56\) written as \((x + 2b)(x + c)\), where \(a\)\(b\), and \(c\) are integers such that \(c > 0.\) What is the value of \(2c-a\)?

tertre  Dec 29, 2017
edited by tertre  Dec 29, 2017
 #1
avatar+502 
0

I wish I could help u guys but I forgot how to solve these type of questions cuz I used to solve them in grade 9 and 10

Rauhan  Dec 29, 2017
 #2
avatar+7266 
+1

x2 + 3x - 28   =   (x - 4)(x + 7)   =  ( x + (-4) )( x - (-7) )   =   (x + a)(x - b)

 

x2 - 10x - 56   =   (x - 14)(x + 4)   =   ( x + 2(-7) )( x + 4 )   =   (x + 2b)(x + c)

 

So...

a  =  -4  ,   b  =  -7  ,   c  =  4

 

And...

2c - a   =   2(4) - -4   =   8 - -4   =   12

hectictar  Dec 29, 2017

31 Online Users

avatar
avatar

New Privacy Policy

We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive information about your use of our website.
For more information: our cookie policy and privacy policy.