\(({x}^{2}+4)({x}^{2}-4)\)
\({x}^{4}-{4x}^{2}+{4x}^{2}-16\)
\({x}^{4}-16\)
\((x+5)(x+9)=0\)
\({x}^{2}+9x+5x+45=0\)
\({x}^{2}+14x+45=0\)
On a PC
Alt+156
≤
On a Mac
Option+<
\(-4x+3y=-41\)
\(3y=-41+4x\)
\(y=\frac{-41+4x}{3}\)
\(y=\frac{-41}{3}+\frac{4}{3}x\)
\(y=-\frac{41}{3}+\frac{4}{3}x\)
\(y=\frac{4}{3}x-\frac{41}{3}\)
\(slope=\frac{4}{3};\) up \(4,\) right \(3\) or down \(4,\) left \(3\)
\(\frac {cos(\Theta)\times sin(\Theta) }{cos(\Theta)}\)
\(sin(\Theta)\)
\(\frac{8}{\sqrt{2}}\)
\(\frac{8\sqrt{2}}{2}\)
\(4\sqrt{2}\)
\(5.6568542494923802...\)
\(D-2.7=1.4\)
\(D=4.1\)
\(sec(150°)\)
\(\frac{1}{cos(150°)}\)
\(\frac{1}{\frac{-\sqrt{3}}{2}}\)
\(1\times(-\frac{2}{\sqrt{3}})\)
\(-\frac{2}{\sqrt{3}}\)
\(-\frac{2\sqrt{3}}{3}\)
\(cos(300°)\)
\(\frac{1}{2}\)
\(csc(-\frac{3\pi}{4})\)
\(\frac{1}{sin(-\frac{3\pi}{4})}\)
\(\frac{1}{-\frac{\sqrt{2}}{2}}\)
\(1\times(-\frac{2}{\sqrt{2}})\)
\(-\frac{2}{\sqrt{2}}\)
\(-\frac{2\sqrt{2}}{2}\)
\(-\sqrt{2}\)
https://stuff.mit.edu/afs/sipb/contrib/pi/pi-billion.txt
It is to show that the answer does not have to be answered by the one way. There are more than one way to solve a problem.