heureka

avatar
Usernameheureka
Score26387
Membership
Stats
Questions 17
Answers 5678

 #3
avatar+26387 
0
Aug 13, 2018
 #3
avatar+26387 
+2
Aug 13, 2018
 #1
avatar+26387 
+2

When N is divided by 10, the remainder is a. When N is divided by 13, the remainder is b.
What is N modulo 130, in terms of a and b?
(Your answer should be in the form ra+sb, where r and s are replaced by nonnegative integers less than 130.)

 

\(\begin{array}{|rclcl|} \hline N &\equiv& a \pmod{10} \quad &\text{or}& \quad N= a+10n,\ n \in Z \\ N &\equiv& b \pmod{13} \quad &\text{or}& \quad N= a+13m,\ m \in Z \\ \\ \hline \\ N = a+10n &=& b+13m \\ 10n &=& 13m+b-a \\\\ \mathbf{n} & \mathbf{=}& \mathbf{\dfrac{13m+b-a}{10}} \\\\ n &=& \dfrac{10m+3m+b-a}{10} \\\\ n &=& \dfrac{10m}{10} +\dfrac{3m+b-a}{10} \\\\ n &=& m +\underbrace{\dfrac{3m+b-a}{10}}_{=c} \\\\ c &=& \dfrac{3m+b-a}{10} \\\\ 10c &=& 3m+b-a \\\\ 3m &=& 10c+a-b \\\\ m &=& \dfrac{10c+a-b}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \\\\ m &=& \dfrac{9c+c+a-b}{3} \\\\ m &=& \dfrac{9c}{3} + \dfrac{c+a-b}{3} \\\\ m &=& 3c + \underbrace{\dfrac{c+a-b}{3}}_{=d} \\\\ d &=& \dfrac{c+a-b}{3} \\\\ 3d &=& c+a-b \\\\ \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\ \hline \end{array} \)

 

\(\mathbf{m=\ ?}\)

\(\begin{array}{|rcll|} \hline \mathbf{m} & \mathbf{=}& \mathbf{\dfrac{10c+a-b}{3}} \quad & | \quad \mathbf{c} & \mathbf{=}& \mathbf{3d+b-a} \\\\ m &=& \dfrac{10(3d+b-a)+a-b}{3} \\\\ m &=& \dfrac{30d+10b-10a+a-b}{3} \\\\ m &=& \dfrac{30d+9b-9a}{3} \\\\ \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ \hline \end{array}\)

 

\(\mathbf{N=\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& b+13m \quad & | \quad \mathbf{m} & \mathbf{=}& \mathbf{10d+3b-3a} \\ N &=& b+13(10d+3b-3a) \\ N &=& 130d -39a + 40b \\ \hline \end{array}\)

 

\(\mathbf{N \pmod{130} =\ ?}\)

\(\begin{array}{|rcll|} \hline N &=& 130d -39a + 40b \quad & | \quad \pmod{130} \\ N &\equiv& 0 -39a + 40b \pmod{130} \\ N &\equiv& -39a + 130a + 40b \pmod{130} \\ \mathbf{N} & \mathbf{\equiv} & \mathbf{91a + 40b \pmod{130}} \\ \hline \end{array}\)

 

\(N \pmod{130} = 91a + 40b\)

 

laugh

Aug 10, 2018
 #3
avatar+26387 
0

In the sequence {2001, 2002, 2003,...} each term after the third is found

by subtracting the previous term from the sum of the two terms that precede that term.

For example, the fourth term is 2001+2002-2003=2000.

What is the value of the 2004th term? 

 

\(\begin{array}{|lcll|} \hline a_1 &=& 2001 \\ a_2 &=& 2002 \\ a_3 &=& 2003 \\ a_4 &=& -1\cdot a_3 + 1\cdot a_2 + 1\cdot a_1 \\ a_5 = -1\cdot a_4 + 1\cdot a_3 + 1\cdot a_2 &=& +2\cdot a_3 + 0\cdot a_2 - 1\cdot a_1 \\ a_6 = -1\cdot a_5 + 1\cdot a_4 + 1\cdot a_3 &=& -2\cdot a_3 + 1\cdot a_2 + 2\cdot a_1 \\ a_7 = -1\cdot a_6 + 1\cdot a_5 + 1\cdot a_4 &=& +3\cdot a_3 + 0\cdot a_2 - 2\cdot a_1 \\ a_8 = -1\cdot a_7 + 1\cdot a_6 + 1\cdot a_5 &=& -3\cdot a_3 + 1\cdot a_2 + 3\cdot a_1 \\ a_9 = -1\cdot a_8 + 1\cdot a_7 + 1\cdot a_6 &=& +4\cdot a_3 + 0\cdot a_2 - 3\cdot a_1 \\ a_{10} = -1\cdot a_9 + 1\cdot a_8 + 1\cdot a_7 &=& -4\cdot a_3 + 1\cdot a_2 + 4\cdot a_1 \\ a_{11} = -1\cdot a_{10} + 1\cdot a_{9} + 1\cdot a_{8} &=& +5\cdot a_3 + 0\cdot a_2 - 4\cdot a_1 \\ a_{12} = -1\cdot a_{11} + 1\cdot a_{10} + 1\cdot a_{9} &=& -5\cdot a_3 + 1\cdot a_2 + 5\cdot a_1 \\ a_{13} = -1\cdot a_{12} + 1\cdot a_{11} + 1\cdot a_{10} &=& +6\cdot a_3 + 0\cdot a_2 - 5\cdot a_1 \\ a_{14} = -1\cdot a_{13} + 1\cdot a_{12} + 1\cdot a_{11} &=& -6\cdot a_3 + 1\cdot a_2 + 6\cdot a_1 \\ \ldots \\ \hline \end{array}\)

 

\(\begin{array}{|rcll|} \hline \mathbf{a_n} & \mathbf{=} & \mathbf{ -(-1)^n\lfloor \dfrac{n-1}{2}\rfloor \cdot a_3 + \lfloor\dfrac{1+(-1)^n}{2}\rfloor \cdot a_2+(-1)^n\lfloor \dfrac{n-2}{2} \rfloor \cdot a_1 } \\\\ a_{2014} &=& \small{ -(-1)^{2014}\lfloor \dfrac{2014-1}{2}\rfloor \cdot 2003 + \lfloor\dfrac{1+(-1)^{2014}}{2}\rfloor \cdot 2002 +(-1)^{2014}\lfloor \dfrac{2014-2}{2} \rfloor \cdot 2001 } \\\\ &=& -\lfloor \dfrac{2013}{2}\rfloor \cdot 2003 + \lfloor\dfrac{1+1}{2}\rfloor \cdot 2002 +1\cdot \lfloor \dfrac{2012}{2} \rfloor \cdot 2001 \\\\ &=& -\lfloor \dfrac{2013}{2}\rfloor \cdot 2003 + \lfloor\dfrac{1+1}{2}\rfloor \cdot 2002 +1\cdot \lfloor \dfrac{2012}{2} \rfloor \cdot 2001 \\\\ &=& -\lfloor \dfrac{2013}{2}\rfloor \cdot 2003 + \lfloor\dfrac{2}{2}\rfloor \cdot 2002 +1\cdot \lfloor \dfrac{2012}{2} \rfloor \cdot 2001 \\\\ &=& -1006 \cdot 2003 + 1 \cdot 2002 +1\cdot 1006 \cdot 2001 \\\\ &=& -2015018 + 2002 + 2013006 \\\\ &=& -2013016 + 2013006 \\\\ &=& 0 \\ \hline \end{array} \)

 

The value of the 2004th term is 0

 

laugh

Aug 9, 2018