Melody

avatar
UsernameMelody
Score118725
Membership
Stats
Questions 900
Answers 33647

-4
849
3
avatar+118725 
Melody  Feb 11, 2022
 #5
avatar+118725 
+1

Thanks Loki and Heureka,

 

I went with a more straight forward (but not shorter) approach, 

I just divided by (x+1) three times to find the coefficients.

 

\(f(x)=ax^5+bx^4+cx^3\\ f(x)+2=ax^5+bx^4+cx^3+2\\ [f(x)+2]\div(x+1)=[ax^5+bx^4+cx^3+2]\div(x+1)\\ \text{I did this by algebraic division and got a remainer of }-c+b-a+2\\ \text{The remainder must be 0 so}\\ -c+b-a+2=0\\ c=b-a+2 \)

 

So now I have

 

\(f(x)+2=ax^5+bx^4+(b-a+2)x^3+2\\ [f(x)+2]\div(x+1)\\\qquad=[ax^5+bx^4+(b-a+2)x^3+2]\div(x+1)\\ \qquad =ax^4+(b-a)x^3+2x^2-2x+2\\~\\ (ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\ \\\text{I did this by algebraic division and got a remainder of }6-b+2a\\ \text{The remainder must be 0 so}\\ 6-b+2a=0\\ b=6+2a\\~\\ (ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\ =(ax^4+(6+a)x^3+2x^2-2x+2)\div(x+1)\\ =ax^3+6x^2-4x+2 \)

 

\((ax^3+6x^2-4x+2)\div(x+1)\\ \\\text{I did this by algebraic division and got a remainder of }12-a\\ \text{The remainder must be 0 so}\\ a=12\\~\\ so\\ a=12\\ b=6+2a=30\\ c=b-a+2=30-12+2=20\\ so\\ f(x)=12x^5+30x^4+20x^3\)

 

----------------------------------------------------------------------------------------------------

LaTex:

f(x)=ax^5+bx^4+cx^3\\
f(x)+2=ax^5+bx^4+cx^3+2\\
[f(x)+2]\div(x+1)=[ax^5+bx^4+cx^3+2]\div(x+1)\\
\text{I did this by algebraic division and got a remainer of }-c+b-a+2\\
\text{The remainder must be 0 so}\\
-c+b-a+2=0\\
c=b-a+2

 

f(x)+2=ax^5+bx^4+(b-a+2)x^3+2\\
[f(x)+2]\div(x+1)\\\qquad=[ax^5+bx^4+(b-a+2)x^3+2]\div(x+1)\\
\qquad =ax^4+(b-a)x^3+2x^2-2x+2\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }6-b+2a\\
\text{The remainder must be 0 so}\\
6-b+2a=0\\
b=6+2a\\~\\
(ax^4+(b-a)x^3+2x^2-2x+2)\div(x+1)\\
=(ax^4+(6+a)x^3+2x^2-2x+2)\div(x+1)\\
=ax^3+6x^2-4x+2

 

(ax^3+6x^2-4x+2)\div(x+1)\\
\\\text{I did this by algebraic division and got a remainder of }12-a\\
\text{The remainder must be 0 so}\\
a=12\\~\\
so\\
a=12\\
b=6+2a=30\\
c=b-a+2=30-12+2=20\\
so\\
f(x)=12x^5+30x^4+20x^3

Aug 27, 2020
 #7
avatar+118725 
+1

Thanks guest, here is a little more insight for others to see what you have done.

 

(a) Compute the sum 101^2 - 97^2 + 93^2 - 89^2 + .... + 5^2 - 1^2

 

I paired them first

(101^2 - 97^2) + (93^2 - 89^2) + .... + (5^2 - 1^2)

 

then turned them around

(5^2 - 1^2)+ ..................   +  (93^2 - 89^2) +  (101^2 - 97^2) 

 

\(T_1=(5^2 - 1^2) = [(3+2)^2 - (3-2)^2]\\ T_2=(13^2-9^2)= [(11+2)^2 - (11-2)^2]\\ ...\\ T_n= [((8n-5)+2)^2 - ((8n-5)-2)^2]\\ ...\\ T_{13}=(101^2-97^2)\\\quad= [(8*13-5+2)^2 - (8*13-5-2)^2]\\ \quad= [(99+2)^2 - (99-2)^2]\quad \text{just checking... it is good}\\ \)

 

\(T_n= [((8n-5)+2)^2 - ((8n-5)-2)^2]\\ T_n= [(8n-3)^2 - (8n-7)^2]\\ T_n= [(8n)^2-48n+9)] - [(8n)^2-112n+49)]\\ T_n= [-48n+9)] - [-112n+49)]\\ T_n= -48n+9 +112n-49\\ T_n= 64n-40\\ \text{This is an AP}\\ a=24, d=64,\;n=13\\ S_n=\frac{n}{2}(2a+(n-1)d]\\ S_{13}=\frac{13}{2}(2*24+12*64]\\ S_{13}=13(24+6*64]\\ S_{13}=13*408\\ S_{13}=5304\\\)

 

 

 

 

LaTex:

T_1=(5^2 - 1^2) = [(3+2)^2 - (3-2)^2]\\
T_2=(13^2-9^2)=  [(11+2)^2 - (11-2)^2]\\
...\\
T_n= [((8n-5)+2)^2 - ((8n-5)-2)^2]\\
...\\
T_{13}=(101^2-97^2)\\\quad=  [(8*13-5+2)^2 - (8*13-5-2)^2]\\
\quad=  [(99+2)^2 - (99-2)^2]\quad \text{just checking... it is good}\\

 

T_n= [((8n-5)+2)^2 - ((8n-5)-2)^2]\\
T_n= [(8n-3)^2 - (8n-7)^2]\\
T_n= [(8n)^2-48n+9)] - [(8n)^2-112n+49)]\\
T_n= [-48n+9)] - [-112n+49)]\\
T_n= -48n+9 +112n-49\\
T_n= 64n-40\\
\text{This is an AP}\\
a=24, d=64,\;n=13\\
S_n=\frac{n}{2}(2a+(n-1)d]\\
S_{13}=\frac{13}{2}(2*24+12*64]\\
S_{13}=13(24+6*64]\\
S_{13}=13*408\\
S_{13}=5304\\

Aug 27, 2020