2013 NS 29
1.
cos-theorem:
b2=d2+(a−c)2−2d(a−c)cos(L)652=602+582−120⋅58cos(L)cos(L)=602+582−652120⋅58cos(L)=27396960cos(L)=0.39353448276L=arccos(0.39353448276)L=66.8253951955∘sin(L)=0.91930985575
2.
cos-theorem:
d2=b2+(a−c)2−2b(a−c)cos(K)602=652+582−130⋅58cos(K)cos(K)=652+582−602130⋅58cos(K)=39897540cos(K)=0.52904509284K=arccos(0.52904509284)K=58.0590417221∘sin(K)=0.84859371300
1.sin(K)=rx or r=xsin(K)2.sin(L)=r80−x|r=xsin(K)sin(L)=xsin(K)80−x(80−x)sin(L)=xsin(K)80sin(L)−xsin(L)=xsin(K)xsin(L)+xsin(K)=80sin(L)x(sin(L)+sin(K))=80sin(L)x=80⋅sin(L)sin(L)+sin(K)x=80⋅0.919309855750.91930985575+0.84859371300x=80⋅0.52x=41.6x=41 35
The length of segment KA is 41 35