+0  
 
0
1973
2
avatar

A circle of radius 9 cm is divided into three equal sectors.

Calculate

a) The length of the arc of each sector

b) the area of each sector

 Apr 29, 2016

Best Answer 

 #1
avatar+26396 
+10

A circle of radius 9 cm is divided into three equal sectors.

Calculate

 

a) The length of the arc of each sector

\(\boxed{ \begin{array}{rcll} c&=&2\cdot\pi\cdot r \end{array} } \)

 

\(\begin{array}{rcll} \frac{c}{3}&=& \frac23 \cdot\pi\cdot r \\ \frac{c}{3}&=& \frac23 \cdot\pi\cdot 9\ \text{cm}\\ \frac{c}{3}&=& 6 \cdot\pi \ \text{cm} \qquad | \qquad \pi = 3.14159265359\dots\\ \frac{c}{3}&=& 18.8495559215 \ \text{cm}\\ \end{array} \)

 

 

b) the area of each sector

\(\boxed{ \begin{array}{rcll} A&=& \pi\cdot r^2 \end{array} } \)

 

\(\begin{array}{rcll} \frac{A}{3}&=& \frac{\pi}{3}\cdot r^2 \\ \frac{A}{3}&=& \frac{\pi}{3}\cdot 9^2 \ \text{cm}^2 \\ \frac{A}{3}&=& \frac{\pi}{3}\cdot 81\ \text{cm}^2\\ \frac{A}{3}&=& 27\cdot \pi \ \text{cm}^2 \qquad | \qquad \pi = 3.14159265359\dots\\ \frac{A}{3}&=& 84.8230016469\ \text{cm}^2\\ \end{array} \)

 

laugh

 Apr 29, 2016
 #1
avatar+26396 
+10
Best Answer

A circle of radius 9 cm is divided into three equal sectors.

Calculate

 

a) The length of the arc of each sector

\(\boxed{ \begin{array}{rcll} c&=&2\cdot\pi\cdot r \end{array} } \)

 

\(\begin{array}{rcll} \frac{c}{3}&=& \frac23 \cdot\pi\cdot r \\ \frac{c}{3}&=& \frac23 \cdot\pi\cdot 9\ \text{cm}\\ \frac{c}{3}&=& 6 \cdot\pi \ \text{cm} \qquad | \qquad \pi = 3.14159265359\dots\\ \frac{c}{3}&=& 18.8495559215 \ \text{cm}\\ \end{array} \)

 

 

b) the area of each sector

\(\boxed{ \begin{array}{rcll} A&=& \pi\cdot r^2 \end{array} } \)

 

\(\begin{array}{rcll} \frac{A}{3}&=& \frac{\pi}{3}\cdot r^2 \\ \frac{A}{3}&=& \frac{\pi}{3}\cdot 9^2 \ \text{cm}^2 \\ \frac{A}{3}&=& \frac{\pi}{3}\cdot 81\ \text{cm}^2\\ \frac{A}{3}&=& 27\cdot \pi \ \text{cm}^2 \qquad | \qquad \pi = 3.14159265359\dots\\ \frac{A}{3}&=& 84.8230016469\ \text{cm}^2\\ \end{array} \)

 

laugh

heureka Apr 29, 2016
 #2
avatar+1904 
0

radius = 9 cm into three equal sectors.

 

a) formua for arc length is \(s=r\Theta \) where \(s\) = arc length, \(r\) = radius, and \(\Theta \) = angle in radians

 

In order to find the arc length in the problem, more inforormation is needed.  You need to say what the angle is either in radians.

 

b) formula for area of a sector is \(A=\frac{1}{2}{r}^{2}\Theta \) where \(A\) = area of the sector of a circle, \(r\) = radius, and \(\Theta \) = angle in radians

 

In oreder to find the area of a section in the problem, more inforormation is needed.  You need to say what the angle is in radians.

 Apr 29, 2016

1 Online Users