If |12/x+3|= 2, find the product of all possible values of x. Express your answer as an improper fraction.
the lines are absolute value
\(|\frac{12}{x}+3|=2\)
\(\frac{12}{x}+3=2\) \(-(\frac{12}{x}+3)=2\)
\(\frac{12}{x}+3-3=2-3\) \(-\frac{12}{x}-3=2\)
\(\frac{12}{x}+0=2-3\) \(-\frac{12}{x}-3+3=2+3\)
\(\frac{12}{x}=2-3\) \(-\frac{12}{x}+0=2+3\)
\(\frac{12}{x}=-1\) \(-\frac{12}{x}=2+3\)
\(\frac{12}{x}\times x=-1\times x\) \(-\frac{12}{x}=5\)
\(12=-1\times x\) \(-\frac{12}{x}\times x=5\times x\)
\(12=-x\) \(-12=5\times x\)
\(\frac{12}{-1}=\frac{-x}{-1}\) \(\frac{-12}{5}=\frac{5x}{5}\)
\(-12=\frac{-x}{-1}\) \(-\frac{12}{5}=\frac{5x}{5}\)
\(-12=x\) \(-\frac{12}{5}=x\)
\(x=-12\) \(x=-\frac{12}{5}\)
.