+0  
 
+1
48
2
avatar+1837 

(sqrt(-2(h+x))-sqrt(-2x))/h

 

How do I simplify this?  Anyone who knows and can give step-by-step answers, I would really appreciate it.  Thanks.

gibsonj338  Apr 21, 2018
Sort: 

2+0 Answers

 #1
avatar+2611 
+1

hint: apply radical rule!

 

I'll post a solution later, but my answer is: \(\frac{\sqrt{2h-2x}}{h}-i \frac{\sqrt2\sqrt x}{h}\)

tertre  Apr 21, 2018
 #2
avatar+92458 
+1

(sqrt(-2(h+x))-sqrt(-2x))/h

 

\(\frac{{\sqrt{-2(h+x)}-\sqrt{-2x}} }{h}    \\ \frac{{\sqrt{-1}\sqrt{2(h+x)}-\sqrt{-1}\sqrt{2x}} }{h}    \\ \frac{\sqrt{-1}\left[\sqrt{2(h+x)}-\sqrt{2x}\right]}{h}    \\ \frac{\left[\sqrt{2h+2x}-\sqrt{2x}\;\right]\;i}{h}    \\ or\\ \frac{\left[\sqrt{h+x}-\sqrt{x}\;\right]\sqrt2\;i}{h}    \\ \)

 

the final answer really depends on what you are doing it for.

Melody  Apr 21, 2018

20 Online Users

avatar
New Privacy Policy (May 2018)
We use cookies to personalise content and ads, to provide social media features and to analyse our traffic. We also share information about your use of our site with our social media, advertising and analytics partners.  Privacy Policy