+0  
 
+1
1008
2
avatar+1904 

(sqrt(-2(h+x))-sqrt(-2x))/h

 

How do I simplify this?  Anyone who knows and can give step-by-step answers, I would really appreciate it.  Thanks.

 Apr 21, 2018
 #1
avatar+4622 
+1

hint: apply radical rule!

 

I'll post a solution later, but my answer is: \(\frac{\sqrt{2h-2x}}{h}-i \frac{\sqrt2\sqrt x}{h}\)

 Apr 21, 2018
 #2
avatar+118687 
+2

(sqrt(-2(h+x))-sqrt(-2x))/h

 

\(\frac{{\sqrt{-2(h+x)}-\sqrt{-2x}} }{h}    \\ \frac{{\sqrt{-1}\sqrt{2(h+x)}-\sqrt{-1}\sqrt{2x}} }{h}    \\ \frac{\sqrt{-1}\left[\sqrt{2(h+x)}-\sqrt{2x}\right]}{h}    \\ \frac{\left[\sqrt{2h+2x}-\sqrt{2x}\;\right]\;i}{h}    \\ or\\ \frac{\left[\sqrt{h+x}-\sqrt{x}\;\right]\sqrt2\;i}{h}    \\ \)

 

the final answer really depends on what you are doing it for.

 Apr 21, 2018

2 Online Users