We use cookies to personalise content and advertisements and to analyse access to our website. Furthermore, our partners for online advertising receive pseudonymised information about your use of our website. cookie policy and privacy policy.
 
+0  
 
+1
324
2
avatar+1904 

(sqrt(-2(h+x))-sqrt(-2x))/h

 

How do I simplify this?  Anyone who knows and can give step-by-step answers, I would really appreciate it.  Thanks.

 Apr 21, 2018
 #1
avatar+4259 
+1

hint: apply radical rule!

 

I'll post a solution later, but my answer is: \(\frac{\sqrt{2h-2x}}{h}-i \frac{\sqrt2\sqrt x}{h}\)

.
 Apr 21, 2018
 #2
avatar+101761 
+2

(sqrt(-2(h+x))-sqrt(-2x))/h

 

\(\frac{{\sqrt{-2(h+x)}-\sqrt{-2x}} }{h}    \\ \frac{{\sqrt{-1}\sqrt{2(h+x)}-\sqrt{-1}\sqrt{2x}} }{h}    \\ \frac{\sqrt{-1}\left[\sqrt{2(h+x)}-\sqrt{2x}\right]}{h}    \\ \frac{\left[\sqrt{2h+2x}-\sqrt{2x}\;\right]\;i}{h}    \\ or\\ \frac{\left[\sqrt{h+x}-\sqrt{x}\;\right]\sqrt2\;i}{h}    \\ \)

 

the final answer really depends on what you are doing it for.

 Apr 21, 2018

10 Online Users

avatar
avatar