+0  
 
+1
771
6
avatar

16^2*(16^-3)^2*4^38

--------------------------- = 16^x                 what is x

(16^(-1)*2^12)                           

 Sep 28, 2015

Best Answer 

 #4
avatar+12530 
+5

Hallo guest!

laughlaughlaugh

 Sep 28, 2015
 #1
avatar
0

ALL that comes down to x=13, which is your answer.

 Sep 28, 2015
 #2
avatar
0

Why did I get x=-114? :P

 Sep 28, 2015
 #3
avatar
0

Why did I get x=-114? :P

 Sep 28, 2015
 #4
avatar+12530 
+5
Best Answer

Hallo guest!

laughlaughlaugh

Omi67 Sep 28, 2015
 #5
avatar+130518 
+5

Here's another approach

 

16^2*(16^-3)^2*4^38

--------------------------- = 16^x                 what is x

(16^(-1)*2^12)  

 

 

 

Notice that    2^12   = (2^2)^6  = 4^6   

 

And   4^38 / 2^12 =   4^38 / 4^6   =  4^32 =  (4^2)^16  =   16^16 .....  so we have

 

[16^2  * [ (16)^(-3)]^2 * 16^16]  /  16^(-1)   =

 

[16^(2) [16^(-6) * 16^16] / 16^(-1)  =

 

16^(12) / 16^(-1)  =

 

16^13     so  x must = 13

 

 

cool cool cool

 Sep 28, 2015
 #6
avatar
0

Here is a very simple and straightforward way of doing it:

 

Solve for x over the real numbers:
4503599627370496 = 16^x
Reverse the equality in 4503599627370496 = 16^x in order to isolate x to the left hand side.
4503599627370496 = 16^x is equivalent to 16^x = 4503599627370496:
16^x = 4503599627370496
Perform the prime factorization of the left hand side.
16^x = 2^(4 x):
2^(4 x) = 4503599627370496
Perform the prime factorization of the right hand side.
4503599627370496 = 2^52:
2^(4 x) = 2^52
Equate exponents.
Equate exponents of 2 on both sides:
4 x = 52
Solve the linear equation.
All equations give x = 13 as the solution:
Answer: | 
| x = 13

 Sep 28, 2015

2 Online Users

avatar