If (1.33)sin(25) = (1.5)sin(theta), what is theta?
So far, I got this:
(1.33)sin(25) = (1.5)sin(theta)
sin(theta) = (1.33)sin(25) / (-0.11735188)
I don't know what else to do... a little help? Please?
I do not understand how you got to \(sin(\Theta)=1.33sin(\Theta)/(-0.1135188)\); however, this is how I would sove this equation.
\(1.33\times sin(25) = 1.5\times sin(\Theta)\)
\(1.33\times -0.132351750098 ≈ 1.5\times sin(\Theta)\)
\(-0.17602782763034 ≈ 1.5\times sin(\Theta)\)
\(\frac{-0.17602782763034}{1.5} ≈ \frac{1.5\times sin(\Theta)}{1.5}\)
\(\frac{-0.17602782763034}{1.5} ≈ \frac{1\times sin(\Theta)}{1}\)
\(\frac{-0.17602782763034}{1.5} ≈ 1\times sin(\Theta)\)
\(\frac{-0.17602782763034}{1.5} ≈ sin(\Theta)\)
\(-0.1173518850868933 ≈ sin(\Theta)\)
\({sin}^{-1}(-0.1173518850868933) ≈ {sin}^{-1}[sin(\Theta)]\)
\(-0.11762291934 ≈\Theta\)
\(\Theta≈-0.11762291934\)
If (1.33)sin(25) = (1.5)sin(theta), what is theta?
1.33 x 0.42261826..... = 1.5sin(theta)
0.5620823.... = 1.5sin(theta) divide both sides by 1.5
Sin(theta) =0.5620823 / 1.5
Sin(theta) = 0.37472152541.....
Theta = Sin^-1(0.37472152541)
Theta = 22 Degrees.
(1.33)sin(25) = (1.5)sin(theta)
I think if is reasonable to assume that the given angles is 25 degrees
\((1.33)sin(25) = (1.5)sin(\theta)\\ \frac{(1.33)sin(25) }{1.5}= \frac{(1.5)sin(\theta)}{1.5}\\ sin\theta = \frac{(1.33)sin(25) }{1.5}\)
1.33*sin(25)/1.5 = 0.3747215254103533
\(sin\theta = 0.3747215254103533\\ \theta =sin^{-1}0.3747215254103533\)
asin(0.3747215254103533) = 22.007102456653
\(\theta\approx 22^\circ\)