If (1.33)sin(25) = (1.5)sin(theta), what is theta?
So far, I got this:
(1.33)sin(25) = (1.5)sin(theta)
sin(theta) = (1.33)sin(25) / (-0.11735188)
I don't know what else to do... a little help? Please?
I do not understand how you got to sin(Θ)=1.33sin(Θ)/(−0.1135188); however, this is how I would sove this equation.
1.33×sin(25)=1.5×sin(Θ)
1.33×−0.132351750098≈1.5×sin(Θ)
−0.17602782763034≈1.5×sin(Θ)
−0.176027827630341.5≈1.5×sin(Θ)1.5
−0.176027827630341.5≈1×sin(Θ)1
−0.176027827630341.5≈1×sin(Θ)
−0.176027827630341.5≈sin(Θ)
−0.1173518850868933≈sin(Θ)
sin−1(−0.1173518850868933)≈sin−1[sin(Θ)]
−0.11762291934≈Θ
Θ≈−0.11762291934
If (1.33)sin(25) = (1.5)sin(theta), what is theta?
1.33 x 0.42261826..... = 1.5sin(theta)
0.5620823.... = 1.5sin(theta) divide both sides by 1.5
Sin(theta) =0.5620823 / 1.5
Sin(theta) = 0.37472152541.....
Theta = Sin^-1(0.37472152541)
Theta = 22 Degrees.
(1.33)sin(25) = (1.5)sin(theta)
I think if is reasonable to assume that the given angles is 25 degrees
(1.33)sin(25)=(1.5)sin(θ)(1.33)sin(25)1.5=(1.5)sin(θ)1.5sinθ=(1.33)sin(25)1.5
1.33*sin(25)/1.5 = 0.3747215254103533
sinθ=0.3747215254103533θ=sin−10.3747215254103533
asin(0.3747215254103533) = 22.007102456653
θ≈22∘