Hi 315,
I don't know what you mean by paremeter , and I assume the black dot is the centre,
Height of the triangle is \(\frac{D}{2}-d = \frac{D-2d}{2}\)
\(sec \frac{\theta}{2}=r\div \frac{D-2d}{2}\\ ( \frac{D-2d}{2})sec \frac{\theta}{2}=r\\ r=( \frac{D-2d}{2})sec \frac{\theta}{2}\\\)
assuming that theta is in radians:
\(\begin{align}\\Area&=\frac{\theta}{2\pi}\times\pi r^2-\frac{1}{2}r^2sin\theta\\~\\ &=\frac{\theta r^2}{2}-\frac{1}{2}r^2sin\theta\\~\\ &=\frac{ r^2}{2}(\theta-sin\theta)\\~\\ &=\frac{\left [\frac{D-2d}{2}\;sec\frac{\theta}{2}\right]^2}{2}(\theta-sin\theta)\\~\\ &=\frac{(D-2d)^2\;sec^2\left(\frac{\theta}{2}\right)(\theta-sin\theta)}{8}\quad units^2\\~\\ \end{align}\)
*
Great !!!!
I ment circumference by perimeter
and I typed perimeter wrong
sorry for that
Here's an alternative approach :
Area of whole sector = (1/2)r^2 * θ
Area of triangle within the sector = (1/2)r^2 sin θ
Yellow area = Area of whole secor - Area of triangle within the sector =
(1/2)r^2 * θ - (1/2)r^2 sin θ =
(1/2)r^2 [ θ - sin θ ]
Perimeter of yellow area =
√ [ 2r^2 - 2r^2 cos θ] + r θ =
r √ [2 - 2 cos θ ] + r θ =
r [ √ [2 - 2 cos θ ] + θ ]